Spelling suggestions: "subject:"semigroup theory"" "subject:"semigroups theory""
1 |
The interplay between rings and semigroupsTalwar, Sunil January 1991 (has links)
No description available.
|
2 |
The structure theory of abundant semigroupsLawson, M. V. January 1985 (has links)
No description available.
|
3 |
The monoid of orientation-preserving mappings on a chainCatarino, Paula Maria Machado Cruz January 1998 (has links)
No description available.
|
4 |
Some algorithmic problems in monoids of Boolean matricesFenner, Peter January 2018 (has links)
A Boolean matrix is a matrix with elements from the Boolean semiring ({0, 1}, +, x), where the addition and multiplication are as usual with the exception that 1 + 1 = 1. In this thesis we study eight classes of monoids whose elements are Boolean matrices. Green's relations are five equivalence relations and three pre-orders which are defined on an arbitrary monoid M and describe much of its structure. In the monoids we consider the equivalence relations are uninteresting - and in most cases completely trivial - but the pre-orders are not and play a vital part in understanding the structure of the monoids. Each of the three pre-orders in each of the eight classes of monoids can be viewed as a computational decision problem: given two elements of the monoid, are they related by the pre-order? The main focus of this thesis is determining the computational complexity of each of these twenty-four decision problems, which we successfully do for all but one.
|
5 |
Exponential Stability for a Diffusion Equation in Polymer Kinetic TheoryMulzet, Alfred Kenric 22 April 1997 (has links)
In this paper we present an exponential stability result for a diffusion equation arising from dumbbell models for polymer flow. Using the methods of semigroup theory, we show that the semigroup U(t) associated with the diffusion equation is well defined and that all solutions converge exponentially to an equilibrium solution. Both finitely and infinitely extensible dumbbell models are considered. The main tool in establishing stability is the proof of compactness of the semigroup. / Ph. D.
|
6 |
On a free boundary problem for ideal, viscous and heat conducting gas flowBates, Dana Michelle 01 December 2016 (has links)
We consider the flow of an ideal gas with internal friction and heat conduction in a layer between a fixed plane and an upper free boundary. We describe the top free surface as the graph of a time dependent function. This forces us to exclude breaking waves on the surface. For this and other reasons we need to confine ourselves to flow close to a motionless equilibrium state which is fairly easy to compute. The full equations of motion, in contrast to that, are quite difficult to solve. As we are close to an equilibrium, a linear system of equations can be used to approximate the behavior of the nonlinear system.
Analytic, strongly continuous semigroups defined on a suitable Banach space X are used to determine the behavior of the linear problem. A strongly continuous semigroup is a family of bounded linear operators {T(t)} on X where 0 ≤ t < infinity satisfying the following conditions.
1. T(s+t)=T(s)T(t) for all s,t ≥ 0
2. T(0)=E, the identity mapping.
3. For each x ∈ X, T(t)x is continuous in t on [0,infinity).
Then there exists an operator A known as the infinitesimal generator of such that T(t)=exp (tA). Thus, an analytic semigroup can be viewed as a generalization of the exponential function.
Some estimates about the decay rates are derived using this theory. We then prove the existence of long term solutions for small initial values. It ought to be emphasized that the decay is not an exponential one which engenders significant difficulties in the transition to nonlinear stability.
|
7 |
Analysis and Approximation of Viscoelastic and Thermoelastic Joint-Beam SystemsFulton, Brian I. 14 August 2006 (has links)
Rigidizable/Inflatable space structures have been the focus of renewed interest in recent years due to efficient packaging for transport. In this work, we examine new mathematical systems used to model small-scale joint dynamics for inflatable space truss structures. We investigate the regularity and asymptotic behavior of systems resulting from various damping models, including Kelvin-Voigt, Boltzmann, and thermoelastic damping. Approximation schemes will also be introduced. Finally, we look at optimal control for the Kelvin-Voigt model using a linear feedback regulator. / Ph. D.
|
8 |
Modelování, analýza a počítačové simulace heterogenní katalýzy v mikroreaktorech / Modeling, Analysis and Computation of heterogeneous catalysis in microchannelsOrava, Vít January 2013 (has links)
We investigate a nonlinear reaction-diffusion system coupled with convection- diffusion system. This combined system corresponds to physical description of heteroge- neous catalysis when the flow of bulk-constituents is driven by a given stationary velocity field; diverse mechanisms between bulk- and surface-parts of the model-domain are de- scribed by Langmuir-Hinshelwood absorption kinetics; and the irreversible reactions on the catalytic walls meets the law of mass action with quadratic rate. The first part of the thesis is focused on analytical results; in Chapter 2 we prove existence and unique- ness of a mild solution for so-called near-by problem using nonlinear semigroup theory; in Chapter 3 we investigate the weak formulation of the problem. We prove an existence of a weak solution for little modified problem which, under an assumption, coincides with the original problem. In the second part of the thesis (Chapter 4) we numerically investigate the evolution of the bio-diesel microreactor. We compute numerical solutions using several methods and we test the results by analytical and physical conditions; with the aim to find the most efficient way to compute precise and physically correct solution. Keywords: heterogeneous catalysis, coupled reaction-diffusion/convection-diffusion system, nonlinear...
|
9 |
Computational techniques in finite semigroup theoryWilson, Wilf A. January 2019 (has links)
A semigroup is simply a set with an associative binary operation; computational semigroup theory is the branch of mathematics concerned with developing techniques for computing with semigroups, as well as investigating semigroups with the help of computers. This thesis explores both sides of computational semigroup theory, across several topics, especially in the finite case. The central focus of this thesis is computing and describing maximal subsemigroups of finite semigroups. A maximal subsemigroup of a semigroup is a proper subsemigroup that is contained in no other proper subsemigroup. We present novel and useful algorithms for computing the maximal subsemigroups of an arbitrary finite semigroup, building on the paper of Graham, Graham, and Rhodes from 1968. In certain cases, the algorithms reduce to computing maximal subgroups of finite groups, and analysing graphs that capture information about the regular I-classes of a semigroup. We use the framework underpinning these algorithms to describe the maximal subsemigroups of many families of finite transformation and diagram monoids. This reproduces and greatly extends a large amount of existing work in the literature, and allows us to easily see the common features between these maximal subsemigroups. This thesis is also concerned with direct products of semigroups, and with a special class of semigroups known as Rees 0-matrix semigroups. We extend known results concerning the generating sets of direct products of semigroups; in doing so, we propose techniques for computing relatively small generating sets for certain kinds of direct products. Additionally, we characterise several features of Rees 0-matrix semigroups in terms of their underlying semigroups and matrices, such as their Green's relations and generating sets, and whether they are inverse. In doing so, we suggest new methods for computing Rees 0-matrix semigroups.
|
10 |
Teoria de semigrupos e aplicações a equações impulsivas com retardamento dependendo do estado / Semigroup theory and applications to impulsive differential equation with state-dependent delayUnião, Gabriel Gonçalves 17 April 2006 (has links)
Neste trabalho estudaremos a existência de soluções fracas para uma classe de equações diferenciais funcionais impulsivas com retardamento dependendo do estado modeladas na forma \'x POT. PRIME\'(t) = Ax(t) + f(t;\' x IND. p(t, xt)), t \'PERTENCE A\'I = [0,a], \'x IND. 0\' =\\varphi \'PERTENCE A\' B, \'DELTA\' \'x(t IND. i) = \'I IND.i\'i(\'x IND.i\'); i = 1, ...n, onde A é o gerador infinitesimal de um \'C IND. 0\'-semigrupo compacto de operadores lineares limitados (\'T\'(t))t \'. OU =\'0 definido em um espaço de Banach X; as fun»ções \'x IND. s\' : (- \'INFIINITO\', 0] \'SETA\' X, \'x IND. s\' ( teta\') = x(s + \'teta\'), estão em um espaço de fase B descrito axiomaticamente; f : I X B \'seta\' X, \'rô\' : I X B \'SETA\' ( - \'INFINITO\', a], \'I IND. i\' : B \'SETA\'X, i=1, ...n , são funções apropriadas; 0 < \'t IND.1\' <... < \'t IND. n\' < a são n¶umeros pré-fixados e o símbolo \'DELTA\'\'ksi\'(t) = \'Ksi\'(\'t POT. + ) - \'ksi\'( \'t POT. -). / In this work we stablish the existence of mild solutions for an impulsive abstract functional differential equation with state-dependent delay described in the form \'x POT. PRIME\'(t) = Ax(t) + f(t;\' x IND. p(t, xt)), t \'BELONGS\'I = [0,a], \'x IND. 0\' =\\varphi \'IS CONTAINED\' B, \'DELTA\' \'x(t IND. i) = \'I IND.i\'i(\'x IND.i\'); i = 1, ...n, where A is the infinitesimal generator of a compact \'C IND. 0\'-semigroup of bounded linear operators (\'T\'(t))t \'. OU =\'0 defined on a Banach space X; the functions \'x IND. s\': ( - INFINito, 0] \'SETA X, \'x IND. s\'(\'teta\') , belongs to some space B described axiomatically; f : I X B \'seta\' X, \'rô\' : I X B \'SETA\' ( - \'INFINITO\', a], \'I IND. i\' : B \'SETA\'X, i=1, ...n , são funções apropriadas; 0 < \'t IND.1\' <... < \'t IND. n\' < a são n¶umeros pré-fixados e o símbolo \'DELTA\'\'ksi\'(t) = \'Ksi\'(\'t POT. + ) - \'ksi\'( \'t POT. -).
|
Page generated in 0.1297 seconds