• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Convergence de cartes et tas de sable / Convergence of random maps and sandpile model

Selig, Thomas 11 December 2014 (has links)
Cette thèse est dédiée à l'étude de divers problèmes se situant à la frontière entre combinatoire et théorie des probabilités. Elle se compose de deux parties indépendantes : la première concerne l'étude asymptotique de certaines familles de \cartes" (en un sens non traditionnel), la seconde concerne l'étude d'une extension stochastique naturelle d'un processus dynamique classique sur un graphe appelé modèle du tas de sable. Même si ces deux parties sont a priori indépendantes, elles exploitent la même idée directrice, à savoir les interactions entre les probabilités et la combinatoire, et comment ces domaines sont amenés à se rendreservice mutuellement. Le Chapitre introductif 1 donne un bref aperçu des interactions possibles entre combinatoire et théorie des probabilités, et annonce les principaux résultats de la thèse. Le Chapitres 2 donne une introduction au domaine de la convergence des cartes. Les contributions principales de cette thèse se situent dans les Chapitres 3, 4 (pour les convergences de cartes) et 5 (pour le modèle stochastique du tas de sable). / This Thesis studies various problems located at the boundary between Combinatorics and Probability Theory. It is formed of two independent parts. In the first part, we study the asymptotic properties of some families of \maps" (from a non traditional viewpoint). In thesecond part, we introduce and study a natural stochastic extension of the so-called Sandpile Model, which is a dynamic process on a graph. While these parts are independent, they exploit the same thrust, which is the many interactions between Combinatorics and Discrete Probability, with these two areas being of mutual benefit to each other. Chapter 1 is a general introduction to such interactions, and states the main results of this Thesis. Chapter 2 is an introduction to the convergence of random maps. The main contributions of this Thesis can be found in Chapters 3, 4 (for the convergence of maps) and 5 (for the Stochastic Sandpile model).

Page generated in 0.0434 seconds