• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Large Landslides in Sensitive Clay in Eastern Canada and the Associated Hazard and Risk to Linear Infrastructure

QUINN, PETER 23 April 2009 (has links)
The Saint Lawrence Lowlands in eastern Canada contain extensive deposits of marine soils deposited in post-glacial seas during and following the retreat of the most recent continental glacier. These marine soils include silt and clay deposits known collectively as Champlain clay. When the pore fluid in these marine deposits has changed over time to a lower salinity, the clay can become very sensitive, or demonstrate substantial strength loss after reaching the peak strength with sufficient strain under undrained load conditions. Sensitive clay soils are subject to a peculiar type of very large landslide that typically involves great extents of nearly horizontal ground, usually occurring suddenly and without warning. These landslides tend to be described as “retrogressive” in the literature and practice, implying that they develop as a series of successive small failures that advance rearward until a final stable position is reached. The work of this thesis is organized into four different themes, with an overall objective of understanding the hazard and risk associated with large landslides in sensitive clay to linear infrastructure such as railways. The first theme, documented in Chapter 2, develops a number of spatial relationships between specific physiographic and geologic features and landslide occurrence or absence, as determined through air photo analysis and a review of the literature. The second theme, documented in Chapter 3, presents the construction of a digital database of large landslides in sensitive clay in eastern Canada, for the purposes of studying landslide susceptibility, hazard and risk. The third theme, documented in Chapters 4 and 5, presents and defends a novel mechanical model for development of these large landslides. This model suggests the landslides develop progressively, rather than retrogressively, and the science of fracture mechanics is employed to substantiate the model. The fourth theme, documented in Chapters 6 and 7, synthesizes the findings of the earlier themes and presents a methodology for estimating landslide susceptibility in Champlain clay. That approach is then extended to develop an understanding of the hazard. The concluding chapter extends that work to present an initial appreciation of landslide risk to railways. / Thesis (Ph.D, Geological Sciences & Geological Engineering) -- Queen's University, 2009-04-23 13:22:19.53
2

Progressive landslide analysis : Applications of a Finite Difference Method by Dr. Stig Bernander Case Study of the North Spur at Muskrat Falls, Labrador, Canada

Dury, Robin January 2017 (has links)
An easy-to-use spreadsheet version of a finite difference method for progressive landslide analysis has been developed. The finite difference method was originally developed by Dr. Stig Bernander, earlier adjunct professor at Luleå University of Technology and head of the Design Department of Skanska AB in Gothenburg, Sweden.. The so called Muskrat Falls Project consists in the ongoing construction of a hydroelectric power plant in Churchill River Valley, Labrador, Canada. The site hosting the project includes a land ridge which is supposed to be used as a natural dam and thus be submitted to important water pressures. Yet, previous landslides in the area have shown that a stability analysis is worth to be carried out in order to ensure the safety of the facility. Until now, investigations have only been carried out using the traditional limit equilibrium method and related elastic-plastic theory. For the sake of simplicity, this approach does not take into account deformations outside and inside the sliding body. However, because of the soil features in Churchill River Valley and particularly its ‘deformation softening’ behavior, there is increasing evidence that the conventional analysis is not relevant in this situation. Further, when analyzing the total stability of the ridge, only a horizontal failure surface has been used and not an inclined one, which is very optimistic and rather unrealistic.. In order to provide a more reliable study, a progressive failure analysis has been performed according to the finite difference method of Dr. Stig Bernander. The development of a spreadsheet adapted to this particular problem has allowed getting quickly and easily numerical results for several cases of study and assumptions. For assumed material properties and geometries of failure, the critical load-carrying capacity is below 1000 kN/m whereas a rise of the water level with 21 m will give an increased load of Nq  = 2420 kN/m. This is more than twice of the what the ridge may stand with the assumed properties. The investigation has led to the conclusion that the situation will be risky for many combinations of soil properties if the water level is raised as high as initially planned. The investigation also shows that more material tests are necessary and that stabilization work may be needed to eliminate the risk for a landslide.

Page generated in 0.059 seconds