• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 285
  • 88
  • 46
  • 37
  • 27
  • 13
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 592
  • 592
  • 470
  • 104
  • 87
  • 82
  • 81
  • 81
  • 79
  • 64
  • 63
  • 61
  • 55
  • 49
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Algorithms and Protocols Enhancing Mobility Support for Wireless Sensor Networks Based on Bluetooth and Zigbee

García Castaño, Javier January 2006 (has links)
<p>Mobile communication systems are experiencing a huge growth. While traditional communication paradigms deal with fixed networks, mobility raises a new set of questions, techniques, and solutions. This work focuses on wireless sensor networks (WSNs) where each node is a mobile device. The main objectives of this thesis have been to develop algorithms and protocols enabling WSNs with a special interest in overcoming mobility support limitations of standards such as Bluetooth and Zigbee. The contributions of this work may be divided in four major parts related to mobility support. The first part describes the implementation of local positioning services in Bluetooth since local positioning is not supported in Bluetooth v1.1. The obtained results are used in later implemented handover algorithms in terms of deciding when to perform the handover. Moreover local positioning information may be used in further developed routing protocols. The second part deals with handover as a solution to overcome the getting out of range problem. Algorithms for handover have been implemented enabling mobility in Bluetooth infrastructure networks. The principal achievement in this part is the significant reduction of handover latency since sensor cost and quality of service are directly affected by this parameter. The third part solves the routing problems originated with handovers. The main contribution of this part is the impact of the Bluetooth scatternet formation and routing protocols, for multi-hop data transmissions, in the system quality of service. The final part is a comparison between Bluetooth and Zigbee in terms of mobility support. The main outcome of this comparison resides on the conclusions, which can be used as a technology election guide.</p><p>The main scientific contribution relies on the implementation of a mobile WSN with Bluetooth v1.1 inside the scope of the ”Multi Monitoring Medical Chip (M3C) for Homecare Applications” European Union project (Sixth Framework Program (FP6) Reference: 508291) offering multi-hop routing support and improvements in handover latencies with aid of local positioning services.</p>
62

Accuracy estimation for sensor networks

Wen, Hongkai January 2014 (has links)
With sensor technology gaining maturity and becoming ubiquitous, we are experiencing an unprecedented wealth of sensor data. In most sensing scenarios, the measurements generated by sensor networks are noisy and usually annotated with some measure of uncertainty. The problem we address in this thesis is how to estimate the accuracy of the sensor systems based on the probabilistic measurements they provide. This problem is increasingly common in many settings, such as multiple sensing services are competing for the same group of users, detecting faults in large scale networks, or establishing trustworthiness of different individuals in social sensing. It is also challenging in many ways, for instance, the ground truth of the monitored states is absent, the users often lack a clear view of the implementation details of the sensor systems, and the reported accuracy can be misleading. To address theses challenges, in this thesis we formulate the problem of estimating the accuracy of sensor systems in a general manner that applies to a broad spectrum of sensing scenarios. We then propose an accuracy estimation framework that breaks the problem into layers, which can be implemented in different ways. We present a novel inference-based accuracy estimation approach, which assesses the accuracy of sensor systems by comparing the reported measurements with the states inferred with the probabilistic measurements from all systems and available prior knowledge. We also propose a new learning-based approach for accuracy estimation, which employs novel parameter learning techniques. The learned parameters are either used to improve estimating the accuracy of sensor measurements, or to derive the accuracy of sensor systems directly in certain cases. We perform a systematic experimental evaluation on two datasets collected from real-world sensor deployments, where an array of different approaches are juxtaposed and compared extensively. We discuss how they trade accuracy for computation cost, and how this trade-off largely depends on the knowledge of the sensing scenarios. We also show that the proposed approaches outperform the competing ones in estimating accuracy and ranking the sensor systems.
63

ENERGY EFFICIENT EMBEDDED SYSTEM DESIGN FOR MEDICAL CARE SYSTEM USING WIRELESS SENSOR NETWORK

LI, QI 05 December 2008 (has links)
Recent surveys on medical service systems show that the cost of patient monitoring has grown significantly. The widespread use of portable digital medical device makes it possible to provide a more comprehensive tracking of patient conditions. However, the development of a full scale, distributed health monitoring system is much delayed due to the lack of efficient wireless communication in a large distributed network. This becomes a challenging research topic which is to find a way to provide accurate and real time patient information to medical experts in a fast, efficient and cost effective fashion. This paper proposes a novel solution on building a system which links patients and doctors together using embedded system technology and wireless sensor network. The content presented in this thesis introduces the design and implement of such a system.
64

Composing and connecting devices in animal telemetry network

Krishna, Ashwin January 1900 (has links)
Master of Science / Department of Computing and Information Sciences / Venkatesh P. Ranganath / As the Internet of Things (IoT) continues to grow, the need for services that span multiple application domains will continue to increase to realise the numerous possibilities enabled by IoT. Today, however, heterogeneity among devices leads to interoperability issues while building a system of systems and often give rise to closed ecosystems. The issues with interoperability are driven by the inability of devices and apps from different vendors to communicate with each other. The interoperability problem forces the users to stick to one particular vendor, leading to vendor lock-in. To achieve interoperability, the users have to do the heavy lifting (at times impossible) of connecting heterogeneous devices. As we slowly move towards system-of-systems and IoT, there is a real need to support heterogeneity and interoperability. A recent effort in Santos Lab developed Medical Device Coordination Framework (MDCF), which was a step to address these issues in the space of human medical systems. Subsequently, we have been wondering if a similar solution can be employed in the area of animal science. In this effort, by borrowing observations from MDCF and knowledge from on-field experience, we have created a demonstration showcasing how a combination of precise component descriptions (via DSL) and communication patterns can be used in software development and deployment to overcome barriers due to heterogeneity, interoperability and to enable an open ecosystem of apps and devices in the space of animal telemetry.
65

Monitoring of Indoor Relative Humidity Levels in Residential Dwellings: A Sensor Network Application

Lee, Lizabeth 01 May 2008 (has links)
Indoor Air Quality is an increasing concern in the world today. The mere presence of people in a building or residence can significantly alter indoor air quality. Relative humidity over the range of normal indoor temperatures (66 - 80 degrees Farenheit) has been linked both directly and indirectly to various health and structural problems. The purpose of this project was to discover whether residential dwellings might benefit from an indoor humidification system. The project consisted of the deployment of three separate sensor networks consisting of 12 tmote sky modules manufactured by the Moteiv corporation, each equipped with a temperature and humidity sensor manufactured by Sensirion. Each tmote sky module continuously transmitted the raw data readings to a base station to be processed. The lifetime of each network was approximately four days of continuous data transmission. The results verified the hypothesis that relative humidity levels have a significant affect on the indoor environment and can be linked to the health and structural problems reported by the occupants of each monitored residence. Based on the project findings residential dwellings would benefit from an indoor humidification system, given the symptoms associated with relative humidity level problems exist.
66

Data reliability control in wireless sensor networks for data streaming applications

Le, Dinh Tuan, Computer Science & Engineering, Faculty of Engineering, UNSW January 2009 (has links)
This thesis contributes toward the design of a reliable and energy-efficient transport system for Wireless Sensor Networks. Wireless Sensor Networks have emerged as a vital new area in networking research. In many Wireless Sensor Network systems, a common task of sensor nodes is to sense the environment and send the sensed data to a sink node. Thus, the effectiveness of a Wireless Sensor Network depends on how reliably the sensor nodes can deliver their sensed data to the sink. However, the sensor nodes are susceptible to loss for various reasons when there are dynamics in wireless transmission medium, environmental interference, battery depletion, or accidentally damage, etc. Therefore, assuring reliable data delivery between the sensor nodes and the sink in Wireless Sensor Networks is a challenging task. The primary contributions of this thesis include four parts. First, we design, implement, and evaluate a cross-layer communication protocol for reliable data transfer for data streaming applications in Wireless Sensor Networks. We employ reliable algorithms in each layer of the communication stack. At the MAC layer, a CSMA MAC protocol with an explicit hop-by-hop Acknowledgment loss recovery is employed. To ensure the end-to-end reliability, the maximum number of retransmissions are estimated and used at each sensor node. At the transport layer, an end-to-end Negative Acknowledgment with an aggregated positive Acknowledgment mechanism is used. By inspecting the sequence numbers on the packets, the sink can detect which packets were lost. In addition, to increase the robustness of the system, a watchdog process is implemented at both base station and sensor nodes, which enable them to power cycle when an unexpected fault occurs. We present extensive evaluations, including theoretical analysis, simulations, and experiments in the field based on Fleck-3 platform and the TinyOS operating system. The designed network system has been working in the field for over a year. The results show that our system is a promising solution to a sustainable irrigation system. Second, we present the design of a policy-based Sensor Reliability Management framework for Wireless Sensor Networks called SRM. SRM is based on hierarchical management architecture and on the policy-based network management paradigm. SRM allows the network administrators to interact with the Wireless Sensor Network via the management policies. SRM also provides a self-control capability to the network. This thesis restricts SRM to reliability management, but the same framework is also applicable for other management services by providing the management policies. Our experimental results show that SRM can offer sufficient reliability to the application users while reducing energy consumption by more than 50% compared to other approaches. Third, we propose an Energy-efficient and Reliable Transport Protocol called ERTP, which is designed for data streaming applications in Wireless Sensor Networks. ERTP is an adaptive transport protocol based on statistical reliability that ensures the number of data packets delivered to the sink exceeds the defined threshold while reducing the energy consumption. Using a statistical reliability metric when designing a reliable transport protocol guarantees the delivery of adequate information to the users, and reduces energy consumption when compared to the absolute reliability. ERTP uses hop-by-hop Implicit Acknowledgment with a dynamically updated retransmission timeout for packet loss recovery. In multihop wireless networks, the transmitter can overhear a forwarding transmission and interpret it as an Implicit Acknowledgment. By combining the statistical reliability and the hop-by-hop Implicit Acknowledgment loss recovery, ERTP can offer sufficient reliability to the application users with minimal energy expense. Our extensive simulations and experimental evaluations show that ERTP can reduce energy consumption by more than 45% when compared to the state-of- the-art protocol. Consequently, sensor nodes are more energy-efficient and the lifespan of the unattended Wireless Sensor Network is increased. In Wireless Sensor Networks, sensor node failures can create network partitions or coverage loss which can not be solved by providing reliability at higher layers of the protocol stack. In the final part of this thesis, we investigate the problem of maintaining the network connectivity and coverage when the sensor nodes are failed. We consider a hybrid Wireless Sensor Network where a subset of the nodes has the ability to move at a high energy expense. When a node has low remaining energy (dying node) but it is a critical node which constitutes the network such as a cluster head, it will seek a replacement. If a redundant node is located in the transmission range of the dying node and can fulfill the network connectivity and coverage requirement, it can be used for substitution. Otherwise, a protocol should be in place to relocate the redundant sensor node for replacement. We propose a distributed protocol for Mobile Sensor Relocation problem called Moser. Moser works in three phases. In the first phase, the dying node determines if network partition occurs, finds an available mobile node, and asks for replacement by using flooding algorithm. The dying node also decides the movement schedule of the available mobile node based on certain criteria. The second phase of the Moser protocol involves the actual movement of the mobile nodes to approach the location of the dying node. Finally, when the mobile node has reached the transmission of the dying node, it communicates to the dying nodes and moves to a desired location, where the network connectivity and coverage to the neighbors of the dying nodes are preserved.
67

Shooter Localization in a Wireless Sensor Network / Lokalisering av skytt i ett trådlöst sensornätverk

Wilsson, Olof January 2009 (has links)
<p>Shooter localization systems are used to detect and locate the origin of gunfire. A wireless sensor network is one possible implementation of such a system. A wireless sensor network is sensitive to synchronization errors. Localization techniques that rely on the timing will give less accurate or even useless results if the synchronization errors are too large.</p><p>This thesis focuses on the influence of synchronization errors on the abilityto localize a shooter using a wireless sensor network. A localization algorithm</p><p>is developed and implemented and the effect of synchronization errors is studied. The localization algorithm is evaluated using numerical experiments, simulations, and data from real gunshots collected at field trials.</p><p>The results indicate that the developed localization algorithm is able to localizea shooter with quite good accuracy. However, the localization performance is to a high degree influenced by the geographical configuration of the network as well as the synchronization error.</p> / <p><p>Skottlokaliseringssystem används för att upptäcka och lokalisera ursprunget för avlossade skott. Ett trådlöst sensornätverk är ett sätt att utforma ett sådant system.Trådlösa sensornätverk är känsliga för synkroniseringsfel. Lokaliseringsmetoder som bygger på tidsobservationer kommer med för stora synkroniseringsfel ge dåliga eller helt felaktiga resultat.</p><p>Detta examensarbete fokuserar på vilken inverkan synkroniseringsfel har på möjligheterna att lokalisera en skytt i ett trådlöst sensornätverk. En lokaliseringsalgoritm utvecklas och förmågan att korrekt lokalisera en skytt vid olika synkroniseringsfel undersöks. Lokaliseringsalgoritmen prövas med numeriska experiment, simuleringar och även för data från riktiga skottljud, insamlade vid fältförsök.</p><p>Resultaten visar att lokaliseringsalgoritmen fungerar tillfredställande, men att lokaliseringsförmågan till stor del påverkas av synkroniseringsfel men även av sensornätverkets geografiska utseende.</p></p>
68

Open Secure Office Project : Wireless Sensor Network

Andersson, Rikard, Sandberg, Martin, Urszuly, László January 2005 (has links)
<p>In recent years, the development of wireless sensor networks has made a great progress. Early projects focused on replacement of existing systems equipped with wires. These systems started out as simple static data collection networks with one smart central node that could decide further actions based on the content of the collected data. Through time, the intelligence has become more decentralized, which means the nodes now can cooperate in a more efficient and dynamic manner. The task given is to evaluate TinyOS and NesC on specific hardware from Crossbow Technology Inc, applied on an application called the Open Secure Office Project. This application is designed to enhance the security without negative effects on comfort in a frequently visited open-plan office. Finally, a real world system demonstration should be performed. We propose a solution where there is no urgent need to cover the entire office area with radio signals to maintain a secure sensor system. This is true as long as all entries and exits to the office area are “guarded” by some base station which has as main task to keep track of people and equipment entering or leaving the office. Small scale tests have been performed which show that it is possible to easily develop and maintain a wireless sensor network security system, that could be coordinated by alternative systems.</p>
69

Effective Power Consumption in MAC Protocols for Wireless Sensor Networks

Augustin, Angelika January 2006 (has links)
<p>Wireless sensor networks offer easy implementation, flexibility and mobility of hand held </p><p>devices. Sensors consist of an internal power source, which is the great limitation for </p><p>the life time and the usage of sensor networks. To increase the life time, sensors should </p><p>stay in energy saving sleep mode as long as possible, because in sleep mode the radio is </p><p>either shut down or working with less energy. Better energy handling is implemented in </p><p>different power saving mechanism of common Medium Access Control protocols, which are </p><p>evaluated and analyzed and further extensions and ideas to improve the energy efficiency </p><p>are presented. Slotted PSM is simulated with the NS2 and compared to the WLAN 802.11 </p><p>PSM technology and the results show that energy efficiency and power consumption are </p><p>much better implemented and life time increases with the use of Slotted PSM.</p>
70

Wireless Sensor Network Setup : Wireless sensor motes embedded programing

Iqbal, Javed, Moughal, Farhan January 2010 (has links)
<p>Exploitation of wireless sensor networks (WSNs) in ubiquitous computing environments is continuously increasing for gathering data. Contemporary distributed software systems on WSNs for pragmatic business applications have become extremely adaptive, dynamic, heterogeneous and large scaled. Management of such system is not trivial to fulfil these features, leading to more and more complex management and configuration. Along with encompassing state of art and novel techniques for such diversely dynamic system, in this thesis two alternative techniques namely “task initiation by command” and “run-time task deployment and processing” are compared, for such system’s setup and configuration. Both techniques have their own pros and cons which makes them suitable according to the requirements and contextual situations. A lot of effort has been put to make WSNs more and more efficient in terms of computations and power consumption. Hence comparative analysis of both techniques used in this report to setup and configure WSN can be a benchmark to lead towards most appropriate solution to compensate the need of efficient energy and resource consumption.Both alternative schemes are implemented to setup WSN on Sun Microsystems sunSPOT (Small Programmable Object Technology) sensor nodes which are embedded microcontrollers and programmed them in java (j2me). It performs radio communication between wireless sensors and host via sink node also called base station, along with over the air run-time management of sensors. SunSPOTs built in libraries and KSN libraries are used to implement these alternatives and compare the memory footprint, communication pattern and energy consumption.Exploitation of wireless sensor networks (WSNs) in ubiquitous computing environments is continuously increasing for gathering data. Contemporary distributed software systems on WSNs for pragmatic business applications have become extremely adaptive, dynamic, heterogeneous and large scaled. Management of such system is not trivial to fulfil these features, leading to more and more complex management and configuration. Along with encompassing state of art and novel techniques for such diversely dynamic system, in this thesis two alternative techniques namely “task initiation by command” and “run-time task deployment and processing” are compared, for such system’s setup and configuration. Both techniques have their own pros and cons which makes them suitable according to the requirements and contextual situations. A lot of effort has been put to make WSNs more and more efficient in terms of computations and power consumption. Hence comparative analysis of both techniques used in this report to setup and configure WSN can be a benchmark to lead towards most appropriate solution to compensate the need of efficient energy and resource consumption.Both alternative schemes are implemented to setup WSN on Sun Microsystems sunSPOT (Small Programmable Object Technology) sensor nodes which are embedded microcontrollers and programmed them in java (j2me). It performs radio communication between wireless sensors and host via sink node also called base station, along with over the air run-time management of sensors. SunSPOTs built in libraries and KSN libraries are used to implement these alternatives and compare the memory footprint, communication pattern and energy consumption.</p>

Page generated in 0.0604 seconds