• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 18
  • 12
  • 2
  • 1
  • 1
  • Tagged with
  • 66
  • 66
  • 35
  • 33
  • 28
  • 24
  • 24
  • 24
  • 24
  • 22
  • 22
  • 22
  • 15
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integration of multiple sensor systems

Jones, A. H. January 1986 (has links)
No description available.
2

Image-Based Feature Tracking Algorithms for Real-Time Clad Height Detection in Laser Cladding

Iravani-Tabrizipour, Mehrdad January 2007 (has links)
In laser cladding, a material, usually in the form of powder, is deposited on a substrate. Powder particles are intermingled with inert gas and fed by a powder feeder system on the substrate. Laser is employed to melt the additive material and a small layer of surface of the substrate simultaneously. While the powder is being deposited, the laser melts the powder particles and the melted powder particles join the melt pool on the substrate beneath the laser beam. Generating relative motion between the laser focal point and the substrate will result in moving melt pool on the substrate. This will lead to addition of a desired material to the substrate with desired thickness and good bonding as well as minimum dilution. In addition, by producing clads beside and on the top of each other a functional component can be built in a layer by layer fashion. Despite many advantages of laser cladding, it is highly sensitive to internal and external disturbances. This makes a closed-loop control system for laser cladding inevitable. Utilizing a closed-loop control system in laser cladding makes the system insensitive to external and internal disturbances. Having a closed-loop control system for laser cladding would contribute to substantial improvement in clad quality and cost reduction. Feedback sensor is an essential part in a closed-loop control system. Among different parameters that can be used as feedback signals in a closed-loop control of laser cladding, melt pool geometry and in particular clad height is of great importance specifically for the purpose of rapid prototyping. This thesis presents novel algorithms for real-time detection of clad height in laser cladding. This is accomplished by the following: Tackling the issues pertinent to image acquisition in the presence of harsh and intensive light is scrutinized. Important parameters of digital cameras related to selection of proper type of CCD cameras in order to overcome the existent harsh condition are presented. Also, the existent light in laser cladding arisen from different sources is analyzed and based upon that proper bandpass filters and neutral filters are selected. All these lead to capture relatively sharp and clear images of the melt pool. Capturing good quality pictures potentially would provide valuable information about the process. This information could include, but is not limited to, melt pool geometry (i.e., melt pool height, width, melt pool profile, and wet angle), angle of solidification, melt pool temperature, and melt pool temperature distribution. Furthermore, the issues regarding path dependency of the melt pool image are addressed by using a trinocular cameras configuration. By utilizing this, always two cameras monitor the front end of the melt pool regardless of the direction of the clad. Image analysis of the grabbed images is also discussed. Image thresholding is one of the most formidable tasks in image processing and this difficulty is intensified due to characteristics of the grabbed images of the melt pool (e.g., surrounding hazy area around the melt pool). Applying hard partitioning thresholding method did not lead to detec- tion of the melt pool accurately. As a result, fuzzy thresholding by minimizing of the measure of fuzziness is developed and its performance is investigated. The effect of three important membership functions, triangular, Gaussian, and generalized Bell on the performance of the thresholding method is investigated. Also, Image thresholding by utilizing fuzzy c-means clustering is developed. Applying the developed thresholding methods show promising results. Among the developed thresholding methods, fuzzy thresholding with minimizing the measure of fuzziness with Gaussian membership function is selected for the implementation in the algorithm. Finally, Image feature tracking module is presented. The detected borders of the melt pool images are transformed from image plane to the world plane by using a perspective transformation. Four features of the elliptical features of the projected melt pool borders are selected. These four features along with the angle of tangential path vector with respect to the corresponding right hand side camera's axis are fed into an Elman recurrent neural network. The proposed algorithms and the trained neural network are utilized in the process resulting in acceptable detection of the clad height in deposition of straight clads for a specific direction. It is concluded that the system can detect the clad height with about ±0.15 mm maximum error.
3

Image-Based Feature Tracking Algorithms for Real-Time Clad Height Detection in Laser Cladding

Iravani-Tabrizipour, Mehrdad January 2007 (has links)
In laser cladding, a material, usually in the form of powder, is deposited on a substrate. Powder particles are intermingled with inert gas and fed by a powder feeder system on the substrate. Laser is employed to melt the additive material and a small layer of surface of the substrate simultaneously. While the powder is being deposited, the laser melts the powder particles and the melted powder particles join the melt pool on the substrate beneath the laser beam. Generating relative motion between the laser focal point and the substrate will result in moving melt pool on the substrate. This will lead to addition of a desired material to the substrate with desired thickness and good bonding as well as minimum dilution. In addition, by producing clads beside and on the top of each other a functional component can be built in a layer by layer fashion. Despite many advantages of laser cladding, it is highly sensitive to internal and external disturbances. This makes a closed-loop control system for laser cladding inevitable. Utilizing a closed-loop control system in laser cladding makes the system insensitive to external and internal disturbances. Having a closed-loop control system for laser cladding would contribute to substantial improvement in clad quality and cost reduction. Feedback sensor is an essential part in a closed-loop control system. Among different parameters that can be used as feedback signals in a closed-loop control of laser cladding, melt pool geometry and in particular clad height is of great importance specifically for the purpose of rapid prototyping. This thesis presents novel algorithms for real-time detection of clad height in laser cladding. This is accomplished by the following: Tackling the issues pertinent to image acquisition in the presence of harsh and intensive light is scrutinized. Important parameters of digital cameras related to selection of proper type of CCD cameras in order to overcome the existent harsh condition are presented. Also, the existent light in laser cladding arisen from different sources is analyzed and based upon that proper bandpass filters and neutral filters are selected. All these lead to capture relatively sharp and clear images of the melt pool. Capturing good quality pictures potentially would provide valuable information about the process. This information could include, but is not limited to, melt pool geometry (i.e., melt pool height, width, melt pool profile, and wet angle), angle of solidification, melt pool temperature, and melt pool temperature distribution. Furthermore, the issues regarding path dependency of the melt pool image are addressed by using a trinocular cameras configuration. By utilizing this, always two cameras monitor the front end of the melt pool regardless of the direction of the clad. Image analysis of the grabbed images is also discussed. Image thresholding is one of the most formidable tasks in image processing and this difficulty is intensified due to characteristics of the grabbed images of the melt pool (e.g., surrounding hazy area around the melt pool). Applying hard partitioning thresholding method did not lead to detec- tion of the melt pool accurately. As a result, fuzzy thresholding by minimizing of the measure of fuzziness is developed and its performance is investigated. The effect of three important membership functions, triangular, Gaussian, and generalized Bell on the performance of the thresholding method is investigated. Also, Image thresholding by utilizing fuzzy c-means clustering is developed. Applying the developed thresholding methods show promising results. Among the developed thresholding methods, fuzzy thresholding with minimizing the measure of fuzziness with Gaussian membership function is selected for the implementation in the algorithm. Finally, Image feature tracking module is presented. The detected borders of the melt pool images are transformed from image plane to the world plane by using a perspective transformation. Four features of the elliptical features of the projected melt pool borders are selected. These four features along with the angle of tangential path vector with respect to the corresponding right hand side camera's axis are fed into an Elman recurrent neural network. The proposed algorithms and the trained neural network are utilized in the process resulting in acceptable detection of the clad height in deposition of straight clads for a specific direction. It is concluded that the system can detect the clad height with about ±0.15 mm maximum error.
4

Sensor technology to assess grape bunch temperature variability in Vitis vinifera L. cv. Shiraz

Moffat, Tessa 03 1900 (has links)
Thesis (MScAgric)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: The microclimate environment around the bunch is complex. The spatial distribution of leaves as well as bunch position and morphology impact on the path of direct radiation received by the berries. Canopy microclimate is largely determined by the meteorological conditions (air temperature, solar radiation, wind speed and direction, relative humidity, and precipitation) as well as management practices (trellis/training system, canopy height, vine spacing, row orientation, canopy management practices, irrigation and soil variability and management). The fact that the grapevine continuously responds to its environment, adds to the complexity and dynamic nature of the microclimate that the bunches experience. Field studies involving the effect of the natural bunch environment (i.e. light and temperature conditions) on berry composition, are therefore a challenge, due to the difficulties in quantifying meteorological elements such as temperature and light, which can be hugely variable. There are different sensors available to assess bunch and berry temperature and it can be deployed in different ways within the grapevine canopy, but the difficulty remains in studying the variability that exists within a bunch. This study investigated the value of available sensor technology to measure bunch/berry temperature as well as the spatial and temporal variability on a bunch. Differences in temperature on an intra-berry level were assessed whereas the impact of canopy configuration and bunch orientation on the different sensor levels was also investigated. The contribution of macro- and mesoclimate on bunch and berry temperature was addressed by measuring at two locations (Robertson and Stellenbosch). The potential long term differences in temperature within a bunch with regard to thermal accumulation are discussed. Issues around sensor placement and some technical difficulties related to the sensors are discussed. The results indicated how the effects of mesoclimate were transferred through to the different sensors. A dominating effect of the sea breeze in Stellenbosch was found. Canopy configuration/architecture affected the light regime in the canopy, consequently impacting on bunch temperature variability, specifically in Stellenbosch where a "Ballerina" trellising system was used. Bunch orientation resulted in differences in the temporal variability of bunch/berry temperature and little variability was observed in temperature within the berry. Temperatures of berries situated at the back of the bunch were judged more optimal compared to exposed berries. Direct radiation caused extreme temperatures in exposed berries, which may be detrimental to berry composition and wine quality. This emphasized the importance of the canopy (trellis/training system and management practices) in protecting the bunch from extreme conditions. The large on-bunch spatial variability, observed from measurements with the thermal imager, demonstrated the importance of sensor placement in quantifying the bunch temperature regime; this is also relevant for the future development of berry temperature modelling. Thermal accumulation through the season also illustrated the variability that existed within a bunch, suggesting a potential long term effect on the berry composition. This study proved, in conditions similar to those that may prevail in the South African wine industry, that sensor type and positioning need to be carefully considered in any viticultural/oenological study where bunch microclimate and grape temperatures are assessed. / AFRIKAANSE OPSOMMING: Die mikroklimaat omgewing rondom die tros is kompleks. Die ruimtelike verspreiding van blare sowel as trosposisie en -morfologie het 'n impak op die pad waarlangs direkte straling ontvang word deur die korrels. Lowermikroklimaat word grootliks bepaal deur die meteorologiese kondisies (lugtemperatuur, sonstraling, windspoed en -rigting, relatiewe humiditeit en reënval) sowel as bestuurspraktyke (prieel/opleistelsel, lowerhoogte, wingerdstokspasiëring, ry-oriëntasie, lowerbestuurspraktyke, besproeiing asook grondvariasie en bestuur). Die feit dat die wingerdstok voortdurend reageer op sy omgewing dra by tot die kompleksiteit en dinamiese aard van die mikroklimaat wat die trosse ervaar. Veldstudies gemoeid met die effek van die natuurlike trosomgewing (d.w.s. lig- en temperatuurkondisies) op korrelsamestelling is daarom 'n uitdaging. Die rede hiervoor is dat dit problematies is om meteorologiese elemente soos temperatuur en lig, wat baie veranderlik kan wees, te kwantifiseer. Verskillende sensors is beskikbaar waarmee tros- en korreltemperatuur bepaal kan word en dit kan op verskillende wyses binne die wingerdstoklower aangewend word. Die bestudering van die variasie wat bestaan binne 'n tros is egter steeds problematies. Hierdie studie het die waarde ondersoek van die beskikbare sensortegnologie vir die meting van tros/korreltemperatuur en die ruimtelike en tydsvariasie op 'n tros. Verskille in temperatuur op 'n intra-korrelvlak is bepaal terwyl die impak van lowerkonfigurasie en trosoriëntasie op die verskillende sensorvlakke ook ondersoek is. Die bydrae van makro- en mesoklimaat tot tros- en korreltemperatuur is ondersoek deur te meet by twee verskillende liggings (Robertson en Stellenbosch). Die potensiële langtermyn verskille in temperatuur binne-in 'n tros met betrekking tot temperatuur akkumulasie word bespreek. Kwessies rakende sensorplasing en sommige tegniese probleme wat verband hou met sensors word bespreek. Die resultate het aangedui hoedat die effekte van mesoklimaat oorgedra is na die verskillende sensors. 'n Dominerende effek van die seebries is waargeneem in Stellenbosch. Lowerkonfigurasie/argitektuur het die ligregime in die lower beïnvloed en gevolglik 'n invloed gehad op die trostemperatuur veranderlikheid. Dit was veral die geval in Stellenbosch waar 'n "Ballerina" opleistelsel gebruik is. Trosoriëntasie het gelei tot verskille in tydsvariasie van tros/ korreltemperatuur en min variasie is waargeneem in temperatuur binne die korrel. Temperature van korrels wat voorkom aan die agterkant van die tros is beoordeel as meer optimaal vergeleke met blootgestelde korrels. Direkte straling het uiterste temperature in blootgestelde korrels veroorsaak wat nadelig kan wees vir korrelsamestelling en wynkwaliteit. Hierdeur is die belang van die lower (prieel/opleistelsel en bestuurspraktyke) om die tros te beskerm teen uiterste kondisies beklemtoon. Die groot ruimtelike variasie op 'n tros, soos waargeneem in metings met die termiese kamera, het die belangrikheid van sensorplasing in die kwantifisering van die trostemperatuur regime beklemtoon. Dit is ook relevant vir die toekomstige ontwikkeling van korreltemperatuur modellering. Termiese akkumulasie gedurende die seisoen is ook geïllustreer deur die veranderlikheid wat voorkom binne 'n tros, wat dui op 'n potensiële langtermyn effek op die korrelsamestelling. Hierdie studie het bewys, in kondisies wat algemeen voorkom in die Suid-Afrikaanse wynbedryf, dat sensortipe en -plasing sorgvuldig in ag geneem moet word in enige wingerd/wynkundige studie waar trosmikroklimaat en druiftemperature bepaal word. / Winetech and the National Research Foundation for their financial support of the project
5

Silicon Rich Oxide UV Sensor: A Feasibility Study

Jensen, Sophia, Montillo, Leonardo, Periwal, Yogesh January 2009 (has links)
Class of 2009 Abstract / OBJECTIVES: The purpose of the project was to identify two technologies from INAOE, Instituto Nacional de Astrofisica Optica y Electronica (INAOE) located in Puebla, Mexico, that were close to market and develop a feasibility study for those technologies in a 10 week time frame. METHODS: Open submission from INAOE researchers was allowed for two weeks. Following open submission a weighted criteria matrix was developed to identify the top eight technologies. Interviews were conducted with the top eight primary researchers and their laboratories over a one week period. Voting was conducted to determine the final two technologies. Research was conducted to analyze and identify the market, provide a business and financial model, and provide recommendations. RESULTS: Results are from the feasibility study of the silicon rich oxide UV sensor one of the two technologies selected. Market: Five markets were identified with combined annual production of approximately 3.5 million sensors per year and an annual expected growth rate of 9.1%. Average selling price of a commercially available UV sensor was approximately $35 per unit. Average selling price for the INOAE was estimated to be $18 per unit. Financial: A financial analysis for a start-up venture to sell and manufacture the sensor estimated gross sales in year 1 to be $2.7M, with a net profit $427K, and EBITDA $719K. The target market share of 2%, effective tax rate 40%, market risk premium 10%, discount rate (Wacc) 20.1%, and no debt was used. Start-up costs included a net investment of $279K. A licensing model $150K with 3% royalty fees from revenue was also considered. CONCLUSIONS: Research and information uncovered in the feasibility study supported a move to patent and license the UV sensor technology and move away from creating a new start-up. A thorough market analysis coupled with a conservative financial analysis allowed for the final decision. Five months from the start of the project, a licensing agreement was signed by INOAE and Impulsora Tack for a deal worth $500K, the first licensing agreement ever for the institute. Another first were patents for the technology, never before were any technologies patented by INOAE since its foundation in 1971. This project was made possible by a grant from the Brown Foundation.
6

Scientific Reports on Measurement and Sensor Technology / Wissenschaftliche Berichte aus der Mess- und Sensortechnik

06 September 2016 (has links)
Wissenschaftliche Schriftenreihe, die Dissertationen der Professur Mess- und Sensortechnik beinhaltet.
7

Analysis and design of planar active and passive quasi-optical components using new FDTD techniques

Vazquez, Javier January 2002 (has links)
New Quasi-optical sensor technology, based on the millimetre and submillimetre band of the electromagnetic spectrum, is actually being implemented for many commercial and scientific applications such as remote sensing, astronomy, collision avoidance radar, etc. These novel devices make use of integrated active and passive structures usually as planar arrays. The electromagnetic design and computer simulation of these new structures requires novel numerical techniques. The Finite Difference Time Domain method (FDTD) is well suited for the electromagnetic analysis of integrated devices using active non-linear elements, but is difficult to use for large and/or periodic structures. A rigorous revision of this popular numerical technique is performed in order to permit FDTD to model practical quasi-optical devices. The system impulse response or discrete Green's function (DGF) for FDTD is determined as a polynomial then the FDTD technique is reformulated as a convolution sum. This new alternative algorithm avoids Absorbing Boundary Conditions (ABC's) and can save large amounts of memory to model wire or slot structures. Many applications for the DGF can be foreseen, going beyond quasi-optical components. As an example, the exact ABC based on the DGF for FDTD is implemented for a single grid wall is presented. The problem of time domain analysis of planar periodic structures modelling only one periodic cell is also investigated. Simple Periodic Boundary Conditions (PBC) can be implemented for FDTD, but they can not handle periodic devices (such as phased shift arrays or dichroic screens) which produce fields periodic in a 4D basis (three spatial dimensions plus time). An extended FDTD scheme is presented which uses Lorentz type coordinate transformations to reduce the problem to 3D. The analysis of non-linear devices using FDTD is also considered in the thesis. In this case, the non linear devices are always model using an equivalent lumped element circuit. These circuits are introduced into the FDTD grid by means of the current density following an iterative implicit algorithm. As a demonstration of the technique a quasi-optically feed slot ring mixer with integral lens is designed for operation at 650 GHz.
8

Design and laboratory evaluation of an inexpensive noise sensor

Hallett, Laura Ann 01 August 2017 (has links)
Noise is a pervasive workplace hazard that varies spatially and temporally. Hazard mapping is a useful way to communicate intensity and distribution of noise sources in the workplace. These maps can be created using a stationary network of sensors, although the cost of noise measurement instruments has prohibited their use in such a network. The objectives for this work were to (1) develop an inexpensive noise sensor (<$100) that measures A-weighted sound pressure levels within ±2 dBA of a Type 2 sound level meter (SLM, ~$1,800); and (2) evaluate 50 noise sensors before field deployment as part of an inexpensive sensor network. The inexpensive noise sensor consists of an electret condenser microphone, an amplifier circuit, and a microcontroller with a small form factor (28mm by 47 mm by 9 mm) than can be operated as a stand-alone unit. Laboratory tests were conducted to evaluate 50 of the new sensors at 5 test levels. The testing levels were (1) ambient noise in a quiet office, (2) a pink noise test signal from 65 to 85 dBA in 10 dBA increments, and, (3) 94 dBA using a SLM calibrator. The difference between the output of the sensor and SLM were computed for each level and overall. Ninety-four percent of the noise sensors (n=46) were within ± 2 dBA of the SLM for noise levels from 65 dBA to 94 dBA. As noise level increased, bias decreased, ranging from 18.3% in the quiet office to 0.48% at 94 dBA. Overall bias of the sensors was 0.83% across the 75 dBA to 94 dBA range. These sensors are available for a variety of uses and can be customized for many applications, including incorporation into a stationary sensor network for continuously monitoring noise in manufacturing environments.
9

Einsatz von Sensortechnik in der Bodenbearbeitung – Nutzen für die Beratung

Dölger, Detlef, Willerding, Markus 15 November 2017 (has links) (PDF)
• Wo stehen wir bei Precision/Smart Farming – Immer mehr Elektronik? • Einstellbarkeit von Maschinen • Verschneiden von Informationen – Funktioniert das automatisch? – Analog und Digital kombinieren • Das Ziel ist der Weg – aber kennen wir es? • Wahl des Bodenbearbeitungswerkzeugs • Beispiele für die Anwendung – Bodenbearbeitung – Saat • Und die Beratung?
10

Bodenfeuchtemessung in Echtzeit

Meinel, Till 15 November 2017 (has links) (PDF)
- Einleitung: Projektvorstellung 3D – Saat - Material und Methode zur Einflussermittlung von Bodenparametern auf die Ergebnisse der Feuchtemessung - Präsentation und Diskussion der Ergebnisse - Zusammenfassung und Ausblick

Page generated in 0.0487 seconds