Spelling suggestions: "subject:"cotensor networks design"" "subject:"cotensor networks 1design""
1 |
CytoSensor : system integration and human interface designKiettrisalpipop, Voranon 28 March 2003 (has links)
CytoSensor system integration and design is driven by requirements generated by
the need to complete biological experiment operations. The system is used for toxin-based
detection which will identify and quantify unknown input toxins by using a biosensor
based on a living fish chromatophore. The system consists of 3 main parts: biosensor,
data acquisition and data interpretation.
This thesis is focused on data acquisition. Acquisition, in this case, is via a color
camera since the cells have an easily measurable visual output. The major initial task
is to select the hardware specifications that satisfy user requirements. Components are
obtained from different vendors. The understanding of each component is, therefore,
very important to maximize the system performance and compatibility.
The second major task is to design the software interface and components to
manage the data acquisition. This can be separated into 2 parts. The first part is
acquisition management and control. The second part is the human interface. This
thesis focuses on the human interface.
The human interface is the part that communicates between the user and the
system. The system will send the system status to the user. The user will then direct
the system through the operation. Operators may not be familiar with complicated
computerized systems. A user-friendly interface is important to reduce mistakes and
to facilitate the operation. The goal of this design is to direct the user from a single
look at the interface. The interface should therefore contain all the useful and necessary
information.
The design of the user interface begins with gathering the necessary information
and making a decision about which information is important to deliver to the user. A
clean, tidy and informative user interface will lead to efficient operation. The design
methodology is to group the same information within the same area and be consistent.
Machine operation is very important, as well. In order to reduce the confusion in
system operation, the machine operating protocol is designed to be very similar to the
traditional protocol.
Design of the machine operation is through interactions with the user. Sending
user information to the machine will be handled by the system management program.
By simulating the user scenario, each state change will lead to changing of the state of
the machine, as well. The scenario is implemented in a state-like diagram. This state
diagram must be implemented carefully in order to be able to handle all the cases and
exceptions.
The last and most important part is putting all the components together and
testing the system. All possible scenarios and features listed before designing will be
tested at this point. The last test is to run actual experiments with the system. After all
the tests are satisfied, the system is delivered to the user. At this time, the user might
give more feedback on the system.
In conclusion, the overall goal of designing this system is not only to make the system
for this specific application. However, the goal is to design a general application that
will be able to apply to different sensor application. By changing the core management
and hardware, the software can easily fit another sensor application. / Graduation date: 2003
|
2 |
Protocol design, testing and diagnosis towards dependable wireless sensor networks. / 面向可靠的無線傳感器網絡的協議設計, 測試和診斷 / CUHK electronic theses & dissertations collection / Mian xiang ke kao de wu xian chuan gan qi wang luo de xie yi she ji, ce shi he zhen duanJanuary 2012 (has links)
本文研究面向可靠的無線傳感器網絡的協議設計,測試和診斷。 / 在協議設計方面,我們集中研究媒體接入層的協議設計。首先,我們為水下無線傳感器網絡提出一個有效的媒體接入層協議RAS 。這個協議利用了水下無線傳感器網絡和地面無線傳感器網絡的媒體傳輸時延的差別,采用了並行傳輸的優先級方法。由于會導致碰撞,這種並行傳輸的方法不能被用在地面無線傳感器網絡中。該方法為高負荷的傳感器節點分配更長的傳輸時間。這種具有優先級的機制也同時提高了公平方面的性能。第二,我們處理水下無線傳感器網絡中由于報文失導致的不可靠的問題。基于之前提出的協議RAS ,我們提出了可靠的RAS 協議。該協議可以在可靠性和有效性方便達到一個平衡。它里面的報文確認和重傳機制同傳統的方法不同,所以它可以在提高可靠性的同時保證吞吐量不會被大幅降低。 / 第三,在協議測試方面,我們設計了RealProct ,一種新的可靠的用于無線傳感器網絡的一致性協議測試(測試協議實現是否符合協議規範)的架構。RealProct 采用了實際的傳感器節點來保證測試盡可能的接近實際部署。為了節省使用大規模實際部署來測試的硬件成本和控制成本, RealProct 使用少量傳感器節點虛擬各樣的拓撲結構和事件。同時,測試執行和裁決算法也用于最小化測試用例執行次數,並保證假陰和假陽錯誤低于給定值。 / 最後,我們提出了MDiag,一種使用移動智能手機巡視無線傳感器網絡並診斷網絡錯誤的方法。由于該智能手機不是無線傳感器網絡的組成部分,因此該診斷不會像其它已有的診斷方法那樣影響原無線傳感器網絡的運行。並且,使用智能手機巡視並診斷無線傳感器網絡比部署另一個用于診斷的網絡更有效。在巡視過程中,無線傳感器網絡所交互的報文被收集起來,然後被我們所設計的報文解析器所分析。然後,我們設計了統計性規則來指導異常現象的診斷。為了提高巡視效率,我們提出了一個巡視方法MSEP。 / 我們做了大量實驗驗證以上提出的方法和算法,結果表明它們在達到可靠性無線傳感器網絡的目標上很有效。 / This thesis investigates the protocol design, testing, and diagnosis of Wireless Sensor Networks (WSNs) to achieve dependable WSNs. / In the aspect of protocol design, we focus on the MAC (Medium Access Control) layer protocol design. First, we propose an efficient MAC protocol RAS (routing and application based scheduling protocol) for underwater acoustic sensor networks (UWASNs), a type of WSNs that are deployed in the water. Utilizing the medium propagation difference between UWASNs and terrestrial wireless sensor networks (TWSNs), RAS performs parallel transmissions which would definitely result in collisions in TWSNs. It schedules the transmissions with different priorities by allocating longer time to heavier-traffic sensor nodes. The priority mechanism also benefits the fairness performance. Second, we tackle the unreliability problem caused by the packet loss in UWASNs. Based on the previously designed RAS, we propose a reliable RAS called RRAS that obtains a tradeoff between the reliability and the efficiency. RRAS applies an ACK and retransmission mechanism that is different from the traditional one, so that it can maintain a comparable throughput while improving reliability. / Third, in the area of protocol testing, we design RealProct (reliable Protocol conformance testing with Real sensor nodes), a novel and reliable framework for performing protocol conformance testing in WSNs, i.e., testing the protocol implementations against their specifications. With real sensor nodes, RealProct can ensure that the testing scenarios are as close to the real deployment as possible. To save the hardware cost and control efforts required by testing with large-scale real deployments, RealProct virtualizes a network with any topology and generates non-deterministic events using only a small number of sensor nodes. In addition, test execution and verdict are optimized to minimize the number of test case runs, while guaranteeing satisfactory false positive and false negative rates. / Finally, we propose MDiag, a Mobility-assisted Diagnosis approach that employs smartphones to patrol the WSNs and diagnose failures. Diagnosing with a smartphone which is not a component of WSNs does not intrude the execution of the WSNs as most of the existing diagnosis methods. Moreover, patrolling the smartphone in the WSNs to investigate failures is more efficient than deploying another diagnosis network. During the patrol, packets exchanged in the WSNs are collected and then analyzed by our implemented packet decoder. Statistical rules are also designed to guide the detection of abnormal cases. Aiming at improving the patrol efficiency, a patrol approach MSEP (maximum snooping efficiency patrol) is proposed. We compare MSEP with a naive method, the greedy method, and a baseline method, and demonstrate that MSEP is better in increasing the detection rate and reducing the patrol time than other methods. / We perform extensive evaluations to verify the proposed techniques and algorithms, and the results confirm their advantages in achieving dependable WSNs. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Xiong, Junjie. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 136-154). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstract --- p.i / Acknowledgement --- p.iv / Chapter 1 --- Introduction and Background Study --- p.1 / Chapter 1.1 --- Wireless Sensor Networks (WSNs) --- p.1 / Chapter 1.1.1 --- Sensor Node --- p.5 / Chapter 1.1.2 --- The Base Station (BS) --- p.8 / Chapter 1.1.3 --- The Operating System (OS) of the Sensor Node --- p.8 / Chapter 1.1.4 --- The Protocol Design of WSNs --- p.11 / Chapter 1.2 --- Thesis Scope and Contributions --- p.20 / Chapter 1.2.1 --- Protocol Design --- p.20 / Chapter 1.2.2 --- Protocol Testing --- p.22 / Chapter 1.2.3 --- Protocol Diagnosis --- p.23 / Chapter 1.3 --- Thesis Organization --- p.23 / Chapter 2 --- An Efficient MAC Protocol Design --- p.25 / Chapter 2.1 --- Introduction --- p.26 / Chapter 2.2 --- Related Work --- p.28 / Chapter 2.3 --- RAS Overview --- p.29 / Chapter 2.3.1 --- Scheduling Element --- p.32 / Chapter 2.4 --- The Scheduling Problem in UWASNs --- p.34 / Chapter 2.4.1 --- Scheduling Principles --- p.34 / Chapter 2.4.2 --- Scheduling Problem Formulation --- p.35 / Chapter 2.4.3 --- Scheduling Problem Analysis --- p.37 / Chapter 2.5 --- RAS Protocol --- p.38 / Chapter 2.5.1 --- Scheduling Algorithm of the RAS Protocol --- p.38 / Chapter 2.5.2 --- Analysis of the RAS Protocol --- p.39 / Chapter 2.6 --- Performance Evaluation --- p.42 / Chapter 2.6.1 --- Schedule Length --- p.42 / Chapter 2.6.2 --- Network Throughput --- p.44 / Chapter 2.6.3 --- Average End-to-end Delay --- p.46 / Chapter 2.6.4 --- Average Maximum Queue Length per Node --- p.47 / Chapter 2.7 --- Discussions and Conclusions --- p.49 / Chapter 3 --- A Reliable MAC Protocol Design --- p.51 / Chapter 3.1 --- Introduction --- p.52 / Chapter 3.2 --- Related Work --- p.54 / Chapter 3.3 --- RRAS Protocol --- p.55 / Chapter 3.3.1 --- Overview of NACK-retransmission Mechanism --- p.56 / Chapter 3.3.2 --- Retransmission Mechanism --- p.57 / Chapter 3.3.3 --- Retransmission Time --- p.59 / Chapter 3.4 --- Performance Evaluation --- p.61 / Chapter 3.4.1 --- Retransmission Time of RRAS --- p.62 / Chapter 3.4.2 --- Working Time of RRAS and RAS --- p.63 / Chapter 3.4.3 --- Success Rate of RRAS and RAS --- p.64 / Chapter 3.4.4 --- Throughput of RRAS and RAS --- p.65 / Chapter 3.5 --- Conclusions --- p.66 / Chapter 4 --- Reliable Protocol Conformance Testing --- p.67 / Chapter 4.1 --- Introduction --- p.68 / Chapter 4.2 --- Related Work --- p.71 / Chapter 4.3 --- Protocol Conformance Testing --- p.73 / Chapter 4.3.1 --- PCT Process --- p.74 / Chapter 4.3.2 --- PCT Architecture --- p.75 / Chapter 4.4 --- Design of the RealProct Framework --- p.76 / Chapter 4.5 --- RealProct Techniques --- p.79 / Chapter 4.5.1 --- Topology Virtualization --- p.80 / Chapter 4.5.2 --- Event Virtualization --- p.81 / Chapter 4.5.3 --- Dynamic Test Execution --- p.85 / Chapter 4.6 --- Generality of RealProct --- p.88 / Chapter 4.7 --- Evaluation --- p.89 / Chapter 4.7.1 --- Detecting New Bugs in TCP --- p.90 / Chapter 4.7.2 --- Detecting Previous Bugs in TCP --- p.94 / Chapter 4.7.3 --- Testing Routing Protocol RMRP --- p.98 / Chapter 4.8 --- Conclusions --- p.99 / Chapter 5 --- Mobility-assisted Diagnosis for WSNs --- p.101 / Chapter 5.1 --- Introduction --- p.102 / Chapter 5.2 --- Related Work --- p.105 / Chapter 5.3 --- MDiag Background --- p.108 / Chapter 5.3.1 --- Network Architecture --- p.108 / Chapter 5.3.2 --- Failure Classification --- p.108 / Chapter 5.4 --- MDiag Framework --- p.109 / Chapter 5.4.1 --- Packet Decoder Input and Output --- p.111 / Chapter 5.4.2 --- Statistical Rules on Packet Analysis --- p.112 / Chapter 5.5 --- Coverage-oriented Smartphone Patrol Algorithms --- p.115 / Chapter 5.5.1 --- Naive Method (NM) --- p.115 / Chapter 5.5.2 --- Greedy Method (GM) --- p.116 / Chapter 5.5.3 --- Maximum Snooping Efficiency Patrol (MSEP) --- p.118 / Chapter 5.6 --- Evaluations --- p.119 / Chapter 5.6.1 --- Permanent Failure Detection --- p.121 / Chapter 5.6.2 --- Short-term Failure Detection --- p.122 / Chapter 5.7 --- Conclusions --- p.130 / Chapter 6 --- Conclusions --- p.132 / Bibliography --- p.136
|
3 |
CytoSensor : an application for distributed bio-sensor networksBoichon, Bertrand 28 March 2003 (has links)
The purpose of the thesis is to design and develop a network of automated, distributed,
living cell-based sensors, called CytoSensors. Their main role is to detect a
variety of biological and chemical toxins. The system is designed to help researchers
to carry out multitude of experiments, in order to build a practical knowledge base in
toxin detection. The network is developed in accordance with industry standards, to be
used and deployed for prevention in inhospitable environments such as battlefields, toxic
urban locations or polluted agricultural regions.
The sensor is composed of a processing unit (processor and memory), an archiving
unit (permanent data storage), a communication unit, input devices attached to a data
acquisition unit, and control devices. The CytoSensor is specifically designed to acquire
and analyze visual information about the living cells: hence cameras are used as input
devices and frame grabbers are used as the digitizers. The control devices are additional
external devices developed to help control and automate the process of data acquisition:
they comprise light intensity control USB boards to provide the correct amount of light
to view the cells, touch panels for user-instrument interaction, and bar code readers to
identify vials and experiments. The software, on the other hand, is a complex mosaic
of different elements, each of which has a specific task to accomplish. These building
blocks include the real-time acquisition, archiving, networking, processing, modelling,
sensor output presentation and user interfaces. Our goal is to develop, integrate and
optimize all these components to produce a viable and working device. The prototypes
evolved from an offline, portable sensor equipped with a single high-resolution CCD
camera and high-quality optics, to distributed online sensors with multiplexed CCD
cameras and affordable optics.
The acquisition board digitizes in real time the images from one to twelve multiplexed
high resolution cameras. Several operational requirements must be met. First,
a fault-tolerant and stable control over the input devices and control devices must be
provided. Secondly, acquisition timing errors should be minimized as a trade-off between
performance and the use of a low-cost, general-purpose, industry-standard operating system
such as Microsoft Windows NT. Finally, in order to reduce development time and
increase code reusability, a common abstraction layer is designed to provide for flexible
use with various types of digitizers and cameras.
As part of a distributed detection network, each sensor is able to exchange data
with other "trusted" sensors and users, and to allow remote control of certain tasks. The
sensor may be seen as a node capable of transmitting and receiving acquired or processed
data to a distant device (another sensor, a workstation or a PDA) for visualization, inspection
and decision-making by a front-end user. Each node on the network provides a
set of complementary services including data acquisition, data processing, communication
and system. The mandatory system service monitors the local system performance
and manages data archiving. The communication service connects the various services on
the network by enabling message-passing, file transfer and caching. The sensor network
integrates a lightweight, interoperable and flexible RPC (Remote Procedure Call) protocol
to achieve real-time control and monitoring of these distributed resources. A reliable
embedded database system is used to store metadata bound to acquired and processed
images. This database is also used to maintain information on neighbor nodes, and to
check access credentials of available local services. Finally, by adding store-and-forward
messaging capabilities, the application can be extended to work in wireless and mobile
networks. / Graduation date: 2003
|
4 |
Angle coverage in wireless sensor networksChow, Kit-yee, 周潔儀 January 2007 (has links)
published_or_final_version / abstract / Electrical and Electronic Engineering / Master / Master of Philosophy
|
5 |
Enabling Quality-of-Service Applications in Sensor NetworksSu, Weilian 12 April 2004 (has links)
Recent advances in Micro Electro-Mechanical Systems technology, wireless communications, and digital electronics have enabled the development of low-cost, low-power, multifunctional sensor nodes that are small in size and communicate untethered in short distances. These tiny sensor nodes, which consist of sensing, data processing, and communicating components, leverage the idea of sensor networks based on collaborative effort of a large number of nodes. A wide range of applications utilizing low-end sensor nodes to collaborative work together is envisioned for sensor networks. Some of the application areas are health, military, and security. For example, sensor networks can be used to detect foreign chemical agents in the air and the water. They can help to identify the type, concentration, and location of pollutants. In essence, sensor networks will provide the end user with intelligence and a better understanding of the environment. Realization of these and other sensor network applications require certain fundamental protocols and schemes. The objective of this thesis is to provide some of the basic building blocks that are necessary for sensor networks. These basic blocks are in the areas of routing, time synchronization, and localization. The routing protocol allows different types of traffics to be delivered and fused during delivery to lower the amount of information exchange. The time synchronization protocol enables the sensor nodes to maintain a similar time while the localization technique provides a way to find the sensor nodes in the sensor field. The routing, time synchronization, and localization schemes may be used to provide Quality-of-Service when data is gathered from the sensor networks.
|
6 |
Mechanisms for improving energy efficiency in wireless sensor networksUnknown Date (has links)
A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed in an area. One of the main issues addressed in WSNs research is energy efficiency due to sensors' limited energy resources. WSNs are deployed to monitor and control the physical environment, and to transmit the collected data to one or more sinks using multi-hop communication. Energy efficiency protocols represent a key mechanism in WSNs. This dissertation proposes several methods used to prolong WSNs lifetime focusing on designing energy efficient communication protocols. A critical issue for data gathering in WSNs is the formation of energy holes near the sinks where sensor nodes participate more in relaying data on behalf of other sensors. The solution proposed in this dissertation is to use mobile sinks that change their location to overcome the formation of energy holes. First, a study of the improvement in network lifetime when sinks move along the perimeter of a hexagonal tiling is conveyed. Second, a design of a distributed and localized algorithm used by sinks to decide their next move is proposed. Two extensions of the distributed algorithm, coverage and time-delivery requirement, are also addressed. Sensor scheduling mechanisms are used to increase network lifetime by sending redundant sensor nodes to sleep. In this dissertation a localized connected dominating set based approach is used to optimize network lifetime of a composite event detection application. A set of active nodes form a connected set that monitor the environment and send data to sinks. After some time, a new active nodes set is chosen. Thus, network lifetime is prolonged by alternating the active sensors. QoS is another main issue encountered in WSNs because of the dynamically changing network topology. / This dissertation introduces an energy efficient QoS based routing for periodic and event-based reporting applications. A geographic routing mechanism combined with QoS support is used to forward packets in the network. Congestion control is achieved by using a ring or barrier mechanism that captures and aggregates messages that report the same event to the same sink. The main operations of the barrier mechanism are presented in this dissertation. / by Mirela Ioana Fonoage. / Vita. / Thesis (Ph.D.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
|
7 |
Patterns for wireless sensor networksUnknown Date (has links)
Sensors are shaping many activities in our society with an endless array of potential applications in military, civilian, and medical application. They support different real world applications ranging from common household appliances to complex systems. Technological advancement has enabled sensors to be used in medical applications, wherein they are deployed to monitor patients and assist disabled patients. Sensors have been invaluable in saving lives, be it a soldier's life in a remote battlefield or a civilian's life in a disaster area or natural calamities. In every application the sensors are deployed in a pre-defined manner to perform a specific function. Understanding the basic structure of a sensor node is essential as this would be helpful in using the sensors in devices and environments that have not been explored. In this research, patterns are used to present a more abstract view of the structure and architecture of sensor nodes and wireless sensor networks. This would help an application designer to choose from different types of sensor nodes and sensor network architectures for applications such as robotic landmine detection or remote patient monitoring systems. Moreover, it would also help the network designer to reuse, combine or modify the architectures to suit more complex needs. More importantly, they can be integrated with complete IT applications. One of the important applications of wireless sensor networks in the medical field is a remote patient monitoring system. In this work, patterns were developed to describe the architecture of patient monitoring system. / This pattern describes how to connect sensor nodes and other wireless devices with each other to form a network that aims to monitor the vital signs of a person and report it to a central system. This central system could be accessed by the patient's healthcare provider for treatment purposes. This system shows one of the most important applications of sensors and it application which needs to be integrated with medical records and the use of patterns makes this integration much simpler. / by Anupama Sahu. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
|
8 |
Energy-efficient reliable wireless sensor networks.January 2006 (has links)
Zhou Yangfan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 102-112). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.v / Chapter 1 --- Introduction and Background Study --- p.1 / Chapter 1.1 --- Wireless Sensor Networks --- p.1 / Chapter 1.1.1 --- Wireless Integrated Network Sensors --- p.1 / Chapter 1.1.2 --- Main Challenge of In-situ Sensing with Sensor Nodes: Limited Energy Resource --- p.3 / Chapter 1.1.3 --- Networking the Sensor Nodes --- p.4 / Chapter 1.2 --- Applications of Wireless Sensor Networks --- p.4 / Chapter 1.3 --- Characteristics of Wireless Sensor Networks: A Summary --- p.6 / Chapter 1.4 --- Energy-Efficient and Reliable Wireless Sensor Networks --- p.9 / Chapter 2 --- PORT: A Price-Oriented Reliable Transport Protocol --- p.12 / Chapter 2.1 --- Reliable Sensor-to-Sink Data Communications in Wireless Sensor Networks --- p.14 / Chapter 2.2 --- Related Work --- p.17 / Chapter 2.3 --- Protocol Requirements --- p.20 / Chapter 2.4 --- Design Considerations --- p.25 / Chapter 2.4.1 --- The concept of node price --- p.25 / Chapter 2.4.2 --- Link-loss rate estimation --- p.28 / Chapter 2.4.3 --- Routing scheme --- p.29 / Chapter 2.5 --- Protocol Description --- p.31 / Chapter 2.5.1 --- Task initialization --- p.31 / Chapter 2.5.2 --- Feedback of newly desired source reporting rates --- p.32 / Chapter 2.5.3 --- Feedback of wireless communication condition --- p.32 / Chapter 2.5.4 --- Fault tolerance and scalability considerations --- p.33 / Chapter 2.6 --- Protocol Evaluation: A Case Study --- p.34 / Chapter 2.6.1 --- Simulation model --- p.34 / Chapter 2.6.2 --- Energy consumption comparison --- p.36 / Chapter 2.6.3 --- The impact of reporting sensors' uncertainty distribution --- p.39 / Chapter 2.7 --- Conclusion --- p.40 / Chapter 3 --- Setting Up Energy-Efficient Paths --- p.41 / Chapter 3.1 --- Transmitter Power Setting for Energy-Efficient Sensor-to-Sink Data Communications --- p.46 / Chapter 3.1.1 --- "Network, communication, and energy consumption models" --- p.46 / Chapter 3.1.2 --- Transmitter power setting problem for energy-efficient sensor-to-sink data communications --- p.49 / Chapter 3.2 --- Setting Up the Transmitter Power Levels for Sensor-to-Sink Traffic --- p.51 / Chapter 3.2.1 --- BOU: the basic algorithm --- p.52 / Chapter 3.2.2 --- Packet implosion of BOU: the challenge --- p.53 / Chapter 3.2.3 --- Determining the waiting time before broadcasting --- p.56 / Chapter 3.2.4 --- BOU-WA: an approximation approach --- p.60 / Chapter 3.3 --- Simulation Results --- p.62 / Chapter 3.3.1 --- The comparisons of BOU and BOU-WA --- p.63 / Chapter 3.3.2 --- The approximation of BOU-WA --- p.65 / Chapter 3.4 --- Related Work --- p.67 / Chapter 3.5 --- Conclusion Remarks and Future Work --- p.69 / Chapter 4 --- Solving the Sensor-Grouping Problem --- p.71 / Chapter 4.1 --- Introduction --- p.73 / Chapter 4.2 --- The Normalized Minimum Distance i:A Point-Distribution Index --- p.74 / Chapter 4.3 --- The Sensor-Grouping Problem --- p.77 / Chapter 4.3.1 --- Problem Formulation --- p.80 / Chapter 4.3.2 --- A General Sensing Model --- p.81 / Chapter 4.4 --- Maximizing-i Node-Deduction Algorithm for Sensor-Grouping Problem --- p.84 / Chapter 4.4.1 --- Maximizing-i Node-Deduction Algorithm --- p.84 / Chapter 4.4.2 --- Incremental Coverage Quality Algorithm: A Benchmark for MIND --- p.86 / Chapter 4.5 --- Simulation Results --- p.87 / Chapter 4.5.1 --- Number of Groups Formed by MIND and ICQA --- p.88 / Chapter 4.5.2 --- The Performance of the Resulting Groups --- p.89 / Chapter 4.6 --- Conclusion --- p.90 / Chapter 5 --- Conclusion --- p.92 / Chapter A --- List of Research Conducted --- p.96 / Chapter B --- Algorithms in Chapter 3 and Chapter 4 --- p.98 / Bibliography --- p.102
|
9 |
Low-power front-end designs for wireless biomedical systems in body area network (BAN). / CUHK electronic theses & dissertations collectionJanuary 2012 (has links)
近年來感測器、集成電路及無線通信的科技迅速發展,促使IEEE802.15工作小組6(TG6)致力硏究一個新的無線通信標準─人體區域網路(BAN)。這個新標準特別考量在人體上、人體內或人體周邊的應用。雖然BAN至今還未達成最後定案,不同類型的應用方案已被廣泛提出。這些方案可分為醫療應用(例如:生命徵象感測和植入式治療)及非醫療應用(例如:消費性電子、個人娛樂和遙遠控制)。無線感測節點〈WSN)的基本要求包括輕巧、廉價及低耗電量。因此,本論文提出了一個符合以上要求的注入式鎖態發射機。此外,我們設計了三個發射機的內部模組。由於BAN的物理層例如調變方式和頻譜配置還未完全製訂,本文的電路設計將基於IEEE802.15 TG6的初步建議。 / 第一個模組是一個利用同相位雙路輸入及電流再使用技術的次毫瓦、第一次諧波LC注入式鎖態振盪器〈ILO)。該振盪器操作範圍在醫療植入式通訊服務〈MICS)頻段,並已採用了0.13-μm CMOS工藝實現而僅佔有200 m x 380 m芯片面積。實驗結果表明,在輸入動力0 dBm時,其鎖定範圍可達800 MHz (150 950 MHz) 。最重要的是,該ILO擁有-30 dBm的高輸入靈敏度,同時在1-V供電下只消耗660 A靜態電流。超低的靜態電流使WSN能從人體收集能量而變得完全自主。 / 第二個模組是一個低功耗MICS非整數型頻率合成器,其目的在於選擇信道。雖然整數鎖相環由於其低複雜性而被廣泛使用,對MICS頻段而言並不是一項良好方案。主要原因在於其信道寬只有300 kHz,速度、頻率解析度和相位雜訊變得很難平衡。為此,我們採用0.13-μm CMOS製程設計了一個4階第二型和差積分〈Σ-)調變器分數鎖相環。為了抑制混附單頻信號,二階單迴路數字Σ-調變器加入了抖動。仿真結果顯示該頻率合成器能在15 s內鎖定,同時在1.5-V供電下只消耗4 mW功耗。 / 第三個模組是一個高效能、完全集成的E類功率放大器〈PA)。該PA採用了自給偏壓反相器作為前置放大器,操作範圍在MICS頻段及工業、科學和醫學〈ISM)頻段。在0.18-m CMOS工藝下實現的該PA佔有0.9 mm x 0.7 mm芯片面積。實驗結果表明,在1.2-V供電下及操作頻率是433 MHz時,該PA的漏極效率及輸出功率分別可達40.2 %和14.7 dBm。當操作頻率從380 MHz 到460 MHz,該PA仍能保侍最少34.7 %的漏極效率。此設計適用於低數據傳輸率、固定振幅調變,例如:QPSK、OQPSK等。 / Recent technological advances in sensors, integrated circuits and wireless communication enable miniature devices located on, in or around the human body to form a new wireless communication standard called wireless Body Area Network (BAN). Although BAN is still being investigated by the IEEE 802.15 Task Group 6 (TG6), a vast variety of applications has been proposed which can be categorized into medical applications (e.g. vital signs monitoring and implantable therapeutic treatment) and non-medical applications (e.g. consumer electronics and remote control). The basic requirements of each Wireless Sensor Node (WSN) include light weight, small form-factor, low cost and low power consumption. This thesis proposes an injection-locked transmitter which is a potential candidate to minimize the power consumption of the RF transmitter in WSNs. Three circuit blocks in the proposed injection-locked transmitter are designed and implemented. Since the physical layer of BAN, such as modulation scheme and frequency allocation, has still not been finalized yet, the prototypes in this thesis are designed based on the preliminary suggestions made by the IEEE 802.15 TG6. / The first circuit block is a sub-mW, current-reused first-harmonic LC injection-locked oscillator (ILO) using in-phase dual-input injection technique, operating in the Medical Implantable Communications Service (MICS) band from 402MHz to 405 MHz for medical implants. It has been fabricated in a standard 0.13-m CMOS technology; occupying 200 m x 380 m. Measurement results show that the proposed ILO features a wide locking range of 800 MHz (150-950 MHz) at input power of 0 dBm. More importantly, it has a high input sensitivity of -30 dBm to lock the 3-MHz bandwidth of the MICS band, while consuming only 660 W at 1-V supply. This ultra-low power consumption enables autonomous WSNs by energy harvested from the human body. / The second circuit block is a low power MICS fractional-N frequency synthesizer for channel selection. Although integer-N phase-locked loop (PLL) is widely used due to its low circuit complexity, it is not considered as a good solution for MICS band where the channel spacing is just 300 kHz, due to the severe trade-off between speed, frequency resolution and phase noise performance. To solve this issue, a 4th-order type-II Σ- fractional-N PLL is designed using a standard 0.18-m CMOS technology. A 2nd-order single-loop digital Σ- modulator with dither is designed to eliminate the spurious tones. Simulation results verify that the synthesizer achieves 15 s locking time and consumes 4 mW at a power supply of 1.5 V. / Finally, a power-efficient fully-integrated class-E power amplifier with a self-biased inverter used as a preamplifier stage has been implemented in a standard 0.18-m CMOS process, with 0.9 mm x 0.7 mm active area. It operates in both MICS band for implantable devices and Industrial, Scientific and Medical (ISM) band for wearable devices. Experimental results shows that it achieves 40.2 % drain efficiency while output power is 14.7 dBm at 433 MHz under 1.2-V supply. Moreover, the drain efficiency maintains at least 34.7 % over the frequency range from 380 MHz to 460 MHz. This design is suitable for low data-rate, constant envelope modulation, such as QPSK, OQPSK, etc. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Li, Kwan Wai. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstract of thesis entitled: --- p.I / 摘要 --- p.IV / Contents --- p.VI / List of Figures --- p.XI / List of Tables --- p.XVII / Acknowledgement --- p.XVIII / Chapter CHAPTER 1. --- Introduction --- p.1 / Chapter 1.1 --- Motivation for body area network (BAN) --- p.1 / Chapter 1.2 --- Standardization of BAN and its positioning between different communication technologies --- p.3 / Chapter 1.3 --- Classification of BAN and its potential applications --- p.5 / Chapter 1.4 --- Requirements and challenges of BAN --- p.7 / Chapter 1.5 --- Research objectives and organization of this dissertation --- p.9 / References --- p.11 / Chapter CHAPTER 2. --- Background information of biomedical transceivers --- p.12 / Chapter 2.1 --- MICS band --- p.12 / Chapter 2.1.1 --- Frequency allocation --- p.12 / Chapter 2.1.2 --- Output power --- p.13 / Chapter 2.1.3 --- Transmit spectral mask --- p.14 / Chapter 2.1.4 --- Transmit center frequency tolerance --- p.14 / Chapter 2.1.5 --- Channel model --- p.15 / Chapter 2.1.6 --- Link budget --- p.17 / Chapter 2.2 --- Fundamental figure of merits for transceivers --- p.18 / Chapter 2.2.1 --- Noise figure, noise floor and receiver sensitivity --- p.18 / Chapter 2.2.2 --- Transmitter energy efficiency --- p.19 / References --- p.20 / Chapter CHAPTER 3. --- Review of transmitter architectures --- p.21 / Chapter 3.1 --- Overview --- p.21 / Chapter 3.2 --- Architectures --- p.22 / Chapter 3.2.1 --- Quadrature --- p.22 / Chapter 3.2.2 --- Polar --- p.23 / Chapter 3.2.3 --- PLL-based --- p.24 / Chapter 3.2.4 --- Injection-locked --- p.26 / Chapter 3.3 --- Radio architecture selection for biomedical systems in BAN --- p.27 / Chapter 3.3.1 --- Data-rate --- p.27 / Chapter 3.3.2 --- Modulation scheme --- p.28 / Chapter 3.3.3 --- Proposed transmitter architecture --- p.28 / References --- p.31 / Chapter CHAPTER 4. --- Design of sub-mW injection-locked oscillator --- p.33 / Chapter 4.1 --- Introduction --- p.34 / Chapter 4.2 --- Circuit design and analysis --- p.34 / Chapter 4.3 --- Experimental results --- p.47 / Chapter 4.4 --- Summary --- p.55 / References --- p.56 / Chapter CHAPTER 5. --- Design of low-power fractional-N frequency synthesizer --- p.58 / Chapter 5.1 --- Synthesizer architectures --- p.59 / Chapter 5.2 --- PLL design fundamentals --- p.63 / Chapter 5.2.1 --- Stability --- p.63 / Chapter 5.2.2 --- Phase noise --- p.65 / Chapter 5.3 --- Proposed architecture --- p.67 / Chapter 5.4 --- System design --- p.68 / Chapter 5.4.1 --- Stability --- p.68 / Chapter 5.4.2 --- Phase noise --- p.73 / Chapter 5.5 --- Σ modulation in fractional-N synthesis --- p.75 / Chapter 5.5.1 --- Basic operating principles --- p.76 / Chapter 5.5.2 --- An accumulator as a first-order Σ- modulator --- p.78 / Chapter 5.5.3 --- Noise analysis --- p.80 / Chapter 5.5.4 --- Architectures --- p.84 / Chapter 5.5.5 --- Design and modeling --- p.87 / Chapter 5.5.6 --- Digital circuit implementation --- p.99 / Chapter 5.5.7 --- Measurement results --- p.104 / Chapter 5.6 --- Time domain behavioral modeling --- p.104 / Chapter 5.7 --- Design of building blocks --- p.106 / Chapter 5.7.1 --- VCO --- p.107 / Chapter 5.7.1.1 --- Principles --- p.107 / Chapter 5.7.1.2 --- Circuit design --- p.111 / Chapter 5.7.2 --- PFD --- p.131 / Chapter 5.7.2.1 --- Principles --- p.131 / Chapter 5.7.2.2 --- Circuit design --- p.133 / Chapter 5.7.3 --- CP --- p.136 / Chapter 5.7.3.1 --- Principles --- p.136 / Chapter 5.7.3.2 --- Circuit design --- p.137 / Chapter 5.7.4 --- Frequency divider --- p.138 / Chapter 5.7.4.1 --- Principles --- p.138 / Chapter 5.7.4.2 --- Circuit design --- p.145 / Chapter 5.7.5 --- Loop filter --- p.148 / Chapter 5.8 --- Layout issues --- p.149 / Chapter 5.9 --- Overall simulation results --- p.150 / Chapter 5.1 --- Summary --- p.152 / References --- p.153 / Chapter CHAPTER 6. --- Design of high-efficient power amplifier --- p.154 / Chapter 6.1 --- Classification of PAs --- p.154 / Chapter 6.2 --- Circuit design considerations --- p.158 / Chapter 6.3 --- Experimental results --- p.160 / Chapter 6.4 --- Summary --- p.164 / References --- p.166 / Chapter CHAPTER 7. --- Conclusions and future work --- p.167 / Chapter 7.1 --- Conclusions --- p.167 / Chapter 7.2 --- Future work --- p.168 / References --- p.171
|
10 |
Passive Wireless Saw Sensors With New And Novel Reflector Structures Design And ApplicationsKozlovski, Nikolai 01 January 2011 (has links)
Surface acoustic wave (SAW) devices are a solution for today’s ever growing need for passive wireless sensors. Orthogonal frequency coding (OFC) together with time division multiplexing (TDM) provides a large number of codes and coding algorithms producing devices that have excellent collision properties. Novel SAW noise-like re- flector (NLR) structures with pulse position modulation (PPM) are shown to exhibit good auto- and cross-correlation, and anti-collision properties. Multi-track, multi-transducer approaches yield devices with adjustable input impedances and enhanced collision properties for OFC TDM SAW sensor devices. Each track-transducer is designed for optimum performance for loss, coding, and chip reflectivity. Experimental results and theoretical predictions confirm a constant Q for SAW transducers for a given operational bandwidth, independent of device and transducer embodiment. Results on these new NLR SAW structures and devices along with a new novel 915 MHz transceiver based on a software radio approach was designed, built, and analyzed. Passive wireless SAW temperature sensors were interrogated and demodulated in a spread spectrum correlator system using a new adaptive filter. The first-ever SAW OFC four-sensor operation was demonstrated at a distance of 1 meter and a single sensor was shown to operate up to 3 meters. Comments on future work and directions are also presented
|
Page generated in 0.0451 seconds