• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyses of neuronal replacement in the neuron-depleted olfactory systems in adult mice

Unknown Date (has links)
New neurons are continuously generated in the olfactory system of adult mice, including olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) and interneurons, produced in the subventricular zone (SVZ) and migrated toward olfactory bulb (OB) along rostral migratory stream (RMS). The present study observed the effects of target neuron loss on the life-span and maturation of adult-born OSNs in the OE and on the proliferation, migration and differentiation of SVZ stem cells in the forebrain after eliminating bulb neurons. We found the life-span of newborn neurons in the absence of synaptic targets was shortened, but the timing of maturation was not delayed. In addition, SVZ cells continued to divide and migrate to the damaged bulb, and the migration of newborn cells in the RMS on the contralateral side was delayed at 2 weeks post-BrdU. Also, the proliferation of cells in dentate gyrus of the hippocampus was not affected by OB damage at 3 weeks post-lesion, though lesion affects occurred in the adult SVZ/RMS. / by Huan Liu. / Thesis (M.S.)--Florida Atlantic University, 2008. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2008. Mode of access: World Wide Web.
2

Over-Expression of BDNF Does Not Rescue Sensory Deprivation-Induced Death of Adult-Born Olfactory Granule Cells

Unknown Date (has links)
It is of interest to understand how new neurons incorporate themselves into the existing circuitry of certain neuronal populations. One such population of neurons is that which are born in the subventricular zone (SVZ) and migrate to the olfactory bulb where they differentiate into granule cells. Another area of interest is the role of brain-derived neurotrophic factor (BDNF) on the survival and overall health of these neurons. This study aimed to test whether or not BDNF is a survival factor for adult-born granule cells. Here were utilized a transgenic mouse model over-expressing BDNF under the α- calcium/calmodulin-dependent protein kinase II (CAMKIIα) promoter, and tested its effect on olfactory granule cells under sensory deprived conditions. Results from this experiment indicated that there was no significant difference in cell death or cell survival when comparing transgenic and wild type animals. We concluded that BDNF is not a survival factor for adult-born granule cells. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection

Page generated in 0.095 seconds