• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sentence Compression by Removing Recursive Structure from Parse Tree

Matsubara, Shigeki, Kato, Yoshihide, Egawa, Seiji 04 December 2008 (has links)
PRICAI 2008: Trends in Artificial Intelligence 10th Pacific Rim International Conference on Artificial Intelligence, Hanoi, Vietnam, December 15-19, 2008. Proceedings
2

Rich Linguistic Structure from Large-Scale Web Data

Yamangil, Elif 18 October 2013 (has links)
The past two decades have shown an unexpected effectiveness of Web-scale data in natural language processing. Even the simplest models, when paired with unprecedented amounts of unstructured and unlabeled Web data, have been shown to outperform sophisticated ones. It has been argued that the effectiveness of Web-scale data has undermined the necessity of sophisticated modeling or laborious data set curation. In this thesis, we argue for and illustrate an alternative view, that Web-scale data not only serves to improve the performance of simple models, but also can allow the use of qualitatively more sophisticated models that would not be deployable otherwise, leading to even further performance gains. / Engineering and Applied Sciences
3

Sumarização Automática de Atualização para a língua portuguesa / Update Summarization for the portuguese language

Fernando Antônio Asevêdo Nóbrega 12 December 2017 (has links)
O enorme volume de dados textuais disponível na web caracteriza-se como um cenário ideal para inúmeras aplicações do Processamento de Língua Natural, tal como a tarefa da Sumarização Automática de Atualização (SAA), que tem por objetivo a geração automática de resumos a partir de uma coleção textual admitindo-se que o leitor possui algum conhecimento prévio sobre os textos-fonte. Dessa forma, um bom resumo de atualização deve ser constituído pelas informações mais relevantes, novas e atualizadas com relação ao conhecimento prévio do leitor. Essa tarefa implica em diversos desafios, sobretudo nas etapas de seleção e síntese de conteúdo para o sumário. Embora existam inúmeras abordagens na literatura, com diferentes níveis de complexidade teórica e computacional, pouco dessas investigações fazem uso de algum conhecimento linguístico profundo, que pode auxiliar a identificação de conteúdo mais relevante e atualizado. Além disso, os métodos de sumarização comumente empregam uma abordagem de síntese extrativa, na qual algumas sentenças dos textos-fonte são selecionadas e organizadas para compor o sumário sem alteração de seu conteúdo. Tal abordagem pode limitar a informatividade do sumário, uma vez que alguns segmentos sentenciais podem conter informação redundante ou irrelevante ao leitor. Assim, esforços recentes foram direcionados à síntese compressiva, na qual alguns segmentos das sentenças selecionadas para o sumário são removidos previamente à inserção no sumário. Nesse cenário, este trabalho de doutorado teve por objetivo a investigação do uso de conhecimentos linguísticos, como a Teoria Discursiva Multidocumento (CST), Segmentação de Subtópicos e Reconhecimento de Entidades Nomeadas, em distintas abordagens de seleção de conteúdo por meio das sínteses extrativas e compressivas visando à produção de sumários de atualização mais informativos. Tendo a língua Portuguesa como principal objeto de estudo, foram organizados três novos córpus, o CSTNews-Update, que viabiliza experimentos de SAA, e o PCSC-Pares e G1-Pares, para o desenvolvimento/avaliação de métodos de Compressão Sentencial. Ressalta-se que os experimentos de sumarização foram também realizados para a língua inglesa. Após as experimentações, observou-se que a Segmentação de Subtópicos foi mais efetiva para a produção de sumários mais informativos, porém, em apenas poucas abordagens de seleção de conteúdo. Além disso, foram propostas algumas simplificações para o método DualSum por meio da distribuição de Subtópicos. Tais métodos apresentaram resultados muito satisfatórios com menor complexidade computacional. Visando a produção de sumários compressivos, desenvolveram-se inúmeros métodos de Compressão Sentencial por meio de algoritmos de Aprendizado de Máquina. O melhor método proposto apresentou resultados superiores a um trabalho do estado da arte, que faz uso de algoritmos de Deep Learning. Além dos resultados supracitados, ressalta-se que anteriormente a este trabalho, a maioria das investigações de Sumarização Automática para a língua Portuguesa foi direcionada à geração de sumários a partir de um (monodocumento) ou vários textos relacionados (multidocumento) por meio da síntese extrativa, sobretudo pela ausência se recursos que viabilizassem a expansão da área de Sumarização Automática para esse idioma. Assim, as contribuições deste trabalho engajam-se em três campos, nos métodos de SAA propostos com conhecimento linguísticos, nos métodos de Compressão Sentencial e nos recursos desenvolvidos para a língua Portuguesa. / The huge amount of data that is available online is the main motivation for many tasks of Natural Language Processing, as the Update Summarization (US) which aims to produce a summary from a collection of related texts under the assumption the user/reader has some previous knowledge about the texts subject. Thus, a good update summary must be produced with the most relevant, new and updated content in order to assist the user. This task presents many research challenges, mainly in the processes of content selection and synthesis of the summary. Although there are several approaches for US, most of them do not use of some linguistic information that may assist the identification relevant content for the summary/user. Furthermore, US methods frequently apply an extractive synthesis approach, in which the summary is produced by picking some sentences from the source texts without rewriting operations. Once some segments of the picked sentences may contain redundant or irrelevant content, this synthesis process can to reduce the summary informativeness. Thus, some recent efforts in this field have focused in the compressive synthesis approach, in which some sentences are compressed by deletion of tokens or rewriting operations before be inserted in the output summary. Given this background, this PhD research has investigated the use of some linguistic information, as the Cross Document Theory (CST), Subtopic Segmentation and Named Entity Recognition into distinct content selection approaches for US by use extractive and compressive synthesis process in order to produce more informative update summaries. Once we have focused on the Portuguese language, we have compiled three new resources for this language, the CSTNews-Update, which allows the investigation of US methods for this language, the PCST-Pairs and G1-Pairs, in which there are pairs of original and compressed sentences in order to produce methods of sentence compression. It is important to say we also have performed experiments for the English language, in which there are more resources. The results show the Subtopic Segmentation assists the production of better summaries, however, this have occurred just on some content selection approaches. Furthermore, we also have proposed a simplification for the method DualSum by use Subtopic Segments. These simplifications require low computation power than DualSum and they have presented very satisfactory results. Aiming the production of compressive summaries, we have proposed different compression methods by use machine learning techniques. Our better proposed method present quality similar to a state-of-art system, which is based on Deep Learning algorithms. Previously this investigation, most of the researches on the Automatic Summarization field for the Portuguese language was focused on previous traditional tasks, as the production of summaries from one and many texts that does not consider the user knowledge, by use extractive synthesis processes. Thus, beside our proposed US systems based on linguistic information, which were evaluated over English and Portuguese datasets, we have produced many Compressions Methods and three new resources that will assist the expansion of the Automatic Summarization field for the Portuguese Language.
4

Compressive Cross-Language Text Summarization / Génération automatique de résumé par abstraction dans un contexte multiculturel

Linhares Pontes, Elvys 30 November 2018 (has links)
La popularisation des réseaux sociaux et des documents numériques a rapidement accru l'information disponible sur Internet. Cependant, cette quantité massive de données ne peut pas être analysée manuellement. Parmi les applications existantes du Traitement Automatique du Langage Naturel (TALN), nous nous intéressons dans cette thèse au résumé cross-lingue de texte, autrement dit à la production de résumés dans une langue différente de celle des documents sources. Nous analysons également d'autres tâches du TALN (la représentation des mots, la similarité sémantique ou encore la compression de phrases et de groupes de phrases) pour générer des résumés cross-lingues plus stables et informatifs. La plupart des applications du TALN, celle du résumé automatique y compris, utilisent une mesure de similarité pour analyser et comparer le sens des mots, des séquences de mots, des phrases et des textes. L’une des façons d'analyser cette similarité est de générer une représentation de ces phrases tenant compte de leur contenu. Le sens des phrases est défini par plusieurs éléments, tels que le contexte des mots et des expressions, l'ordre des mots et les informations précédentes. Des mesures simples, comme la mesure cosinus et la distance euclidienne, fournissent une mesure de similarité entre deux phrases. Néanmoins, elles n'analysent pas l'ordre des mots ou les séquences de mots. En analysant ces problèmes, nous proposons un modèle de réseau de neurones combinant des réseaux de neurones récurrents et convolutifs pour estimer la similarité sémantique d'une paire de phrases (ou de textes) en fonction des contextes locaux et généraux des mots. Sur le jeu de données analysé, notre modèle a prédit de meilleurs scores de similarité que les systèmes de base en analysant mieux le sens local et général des mots mais aussi des expressions multimots. Afin d'éliminer les redondances et les informations non pertinentes de phrases similaires, nous proposons de plus une nouvelle méthode de compression multiphrase, fusionnant des phrases au contenu similaire en compressions courtes. Pour ce faire, nous modélisons des groupes de phrases semblables par des graphes de mots. Ensuite, nous appliquons un modèle de programmation linéaire en nombres entiers qui guide la compression de ces groupes à partir d'une liste de mots-clés ; nous cherchons ainsi un chemin dans le graphe de mots qui a une bonne cohésion et qui contient le maximum de mots-clés. Notre approche surpasse les systèmes de base en générant des compressions plus informatives et plus correctes pour les langues française, portugaise et espagnole. Enfin, nous combinons les méthodes précédentes pour construire un système de résumé de texte cross-lingue. Notre système génère des résumés cross-lingue de texte en analysant l'information à la fois dans les langues source et cible, afin d’identifier les phrases les plus pertinentes. Inspirés par les méthodes de résumé de texte par compression en analyse monolingue, nous adaptons notre méthode de compression multiphrase pour ce problème afin de ne conserver que l'information principale. Notre système s'avère être performant pour compresser l'information redondante et pour préserver l'information pertinente, en améliorant les scores d'informativité sans perdre la qualité grammaticale des résumés cross-lingues du français vers l'anglais. En analysant les résumés cross-lingues depuis l’anglais, le français, le portugais ou l’espagnol, vers l’anglais ou le français, notre système améliore les systèmes par extraction de l'état de l'art pour toutes ces langues. En outre, une expérience complémentaire menée sur des transcriptions automatiques de vidéo montre que notre approche permet là encore d'obtenir des scores ROUGE meilleurs et plus stables, même pour ces documents qui présentent des erreurs grammaticales et des informations inexactes ou manquantes. / The popularization of social networks and digital documents increased quickly the informationavailable on the Internet. However, this huge amount of data cannot be analyzedmanually. Natural Language Processing (NLP) analyzes the interactions betweencomputers and human languages in order to process and to analyze natural languagedata. NLP techniques incorporate a variety of methods, including linguistics, semanticsand statistics to extract entities, relationships and understand a document. Amongseveral NLP applications, we are interested, in this thesis, in the cross-language textsummarization which produces a summary in a language different from the languageof the source documents. We also analyzed other NLP tasks (word encoding representation,semantic similarity, sentence and multi-sentence compression) to generate morestable and informative cross-lingual summaries.Most of NLP applications (including all types of text summarization) use a kind ofsimilarity measure to analyze and to compare the meaning of words, chunks, sentencesand texts in their approaches. A way to analyze this similarity is to generate a representationfor these sentences that contains the meaning of them. The meaning of sentencesis defined by several elements, such as the context of words and expressions, the orderof words and the previous information. Simple metrics, such as cosine metric andEuclidean distance, provide a measure of similarity between two sentences; however,they do not analyze the order of words or multi-words. Analyzing these problems,we propose a neural network model that combines recurrent and convolutional neuralnetworks to estimate the semantic similarity of a pair of sentences (or texts) based onthe local and general contexts of words. Our model predicted better similarity scoresthan baselines by analyzing better the local and the general meanings of words andmulti-word expressions.In order to remove redundancies and non-relevant information of similar sentences,we propose a multi-sentence compression method that compresses similar sentencesby fusing them in correct and short compressions that contain the main information ofthese similar sentences. We model clusters of similar sentences as word graphs. Then,we apply an integer linear programming model that guides the compression of theseclusters based on a list of keywords. We look for a path in the word graph that has goodcohesion and contains the maximum of keywords. Our approach outperformed baselinesby generating more informative and correct compressions for French, Portugueseand Spanish languages. Finally, we combine these previous methods to build a cross-language text summarizationsystem. Our system is an {English, French, Portuguese, Spanish}-to-{English,French} cross-language text summarization framework that analyzes the informationin both languages to identify the most relevant sentences. Inspired by the compressivetext summarization methods in monolingual analysis, we adapt our multi-sentencecompression method for this problem to just keep the main information. Our systemproves to be a good alternative to compress redundant information and to preserve relevantinformation. Our system improves informativeness scores without losing grammaticalquality for French-to-English cross-lingual summaries. Analyzing {English,French, Portuguese, Spanish}-to-{English, French} cross-lingual summaries, our systemsignificantly outperforms extractive baselines in the state of the art for all these languages.In addition, we analyze the cross-language text summarization of transcriptdocuments. Our approach achieved better and more stable scores even for these documentsthat have grammatical errors and missing information.
5

Compression automatique de phrases : une étude vers la génération de résumés / Automatic sentence compression : towards abstract summarization

Molina Villegas, Alejandro 30 September 2013 (has links)
Cette étude présente une nouvelle approche pour la génération automatique de résumés, un des principaux défis du Traitement de la Langue Naturelle. Ce sujet, traité pendant un demi-siècle par la recherche, reste encore actuel car personne n’a encore réussi à créer automatiquement des résumés comparables, en qualité, avec ceux produits par des humains. C’est dans ce contexte que la recherche en résumé automatique s’est divisée en deux grandes catégories : le résumé par extraction et le résumé par abstraction. Dans le premier, les phrases sont triées de façon à ce que les meilleures conforment le résumé final. Or, les phrases sélectionnées pour le résumé portent souvent des informations secondaires, une analyse plus fine s’avère nécessaire.Nous proposons une méthode de compression automatique de phrases basée sur l’élimination des fragments à l’intérieur de celles-ci. À partir d’un corpus annoté, nous avons créé un modèle linéaire pour prédire la suppression de ces fragments en fonction de caractéristiques simples. Notre méthode prend en compte trois principes : celui de la pertinence du contenu, l’informativité ; celui de la qualité du contenu, la grammaticalité, et la longueur, le taux de compression. Pour mesurer l’informativité des fragments,nous utilisons une technique inspirée de la physique statistique : l’énergie textuelle.Quant à la grammaticalité, nous proposons d’utiliser des modèles de langage probabilistes.La méthode proposée est capable de générer des résumés corrects en espagnol.Les résultats de cette étude soulèvent divers aspects intéressants vis-à- vis du résumé de textes par compression de phrases. On a observé qu’en général il y a un haut degré de subjectivité de la tâche. Il n’y a pas de compression optimale unique mais plusieurs compressions correctes possibles. Nous considérons donc que les résultats de cette étude ouvrent la discussion par rapport à la subjectivité de l’informativité et son influence pour le résumé automatique. / This dissertation presents a novel approach to automatic text summarization, one of the most challenging tasks in Natural Language Processing (NLP). Until now, no one had ever created a summarization method capable of producing summaries comparable in quality with those produced by humans. Even many of state-of-the-art approaches form the summary by selecting a subset of sentences from the original text. Since some of the selected sentences might still contain superfluous information, a finer analysis is needed. We propose an Automatic Sentence Compression method based on the elimination of intra-phrase discourse segments. Using a manually annotated big corpus, we have obtained a linear model that predicts the elimination probability of a segment on the basis of three simple three criteria: informativity, grammaticality and compression rate. We discuss the difficulties for automatic assessment of these criteria in documents and phrases and we propose a solution based on existing techniques in NLP literature, one applying two different algorithms that produce summaries with compressed sentences. After applying both algorithms in documents in Spanish, our method is able to produce high quality results. Finally, we evaluate the produced summaries using the Turing test to determine if human judges can distinguish between human-produced summaries and machine-produced summaries. This dissertation addresses many previously ignored aspects of NLP, namely the subjectivity of informativity, the sentence compression in Spanish documents, and the evaluation of NLP using the Turing test.

Page generated in 0.1287 seconds