Spelling suggestions: "subject:"sequências encadeados"" "subject:"sequências encaixadas""
1 |
Polinômios ortogonais no círculo unitário: medidas associadas a sequências periódicas / Orthogonal polynomials on the unit circle: associated measures with periodic sequencesSilva, Jairo Santos da [UNESP] 20 February 2017 (has links)
Submitted by JAIRO SANTOS DA SILVA null (jairomath@hotmail.com) on 2017-02-22T18:48:46Z
No. of bitstreams: 1
Tese_Final_Jairo_Santos.pdf: 1270250 bytes, checksum: cbddf0844f67ed21da45b4dcbf48ea40 (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-02-24T20:29:28Z (GMT) No. of bitstreams: 1
silva_js_dr_sjrp.pdf: 1270250 bytes, checksum: cbddf0844f67ed21da45b4dcbf48ea40 (MD5) / Made available in DSpace on 2017-02-24T20:29:28Z (GMT). No. of bitstreams: 1
silva_js_dr_sjrp.pdf: 1270250 bytes, checksum: cbddf0844f67ed21da45b4dcbf48ea40 (MD5)
Previous issue date: 2017-02-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Foi mostrado recentemente que associado a um par de sequências reais (onde uma delas é uma sequência encadeada positiva) existe uma única medida de probabilidade não trivial com suporte no círculo unitário. No presente trabalho nossa principal contribuição é estudar o comportamento dessas medidas quando impomos algumas restrições de sinal e periodicidade sobre essas sequências. Precisamente, fornecemos uma estimativa para o suporte de tais medidas no caso em que a sequência que não é a sequência encadeada positiva satisfaz uma propriedade de sinal alternante. Além disso, quando esse par é tal que a sequência de parâmetros minimal da sequência encadeada positiva e a outra sequência são periódicas, mostramos que o estudo dessas medidas é completamente equivalente ao estudo de medidas associadas a coeficientes de Verblunsky periódicos: o que nos permite neste caso, apresentar, estudar e caracterizar um novo espaço de medidas no círculo unitário. Por fim, estabelecemos informações sobre o suporte essencial de medidas no caso limite periódico, isto é, quando as sequências reais associadas são limite periódicas. / It was shown recently that associated with a pair of real sequences (where one of them is a positive chain sequence) there exists a unique nontrivial probability measure supported on the unit circle. In the present work, our main contribution is to study the behavior of these measures when we impose some restrictions of sign and periodicity on these sequences. Precisely, we provide an estimate for the support of such measures in the event that the sequence which is not the positive chain sequence, satisfies an alternating sign property. Moreover, when this pair is such that the minimal parameter sequence of the positive chain sequence and the other sequence are periodic, we show that the study of these measures is completely equivalent to the study of measures associated with periodic Verblunsky coefficients: which allows us, in this case, to present, to study and to characterize a new space of measures on the unit circle. Finally, we establish information about the essential support of measures in the limit periodic case, i.e., when the associated real sequences are limit periodic.
|
Page generated in 0.0454 seconds