• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Design Methodology for a High Power Density, Voltage Boost, Resonant DC-DC converter

Gafford, James Robert 06 August 2005 (has links)
A full-bridge, parallel-loaded, resonant, zero current/zero voltage switching converter has been developed for DC-DC voltage transformation. The power supply was used to condition power sourced by a 28-V, 400-A Neihoff alternator installed in a HMMWV that delivered power to a 5-kW mobile radar. This design focuses on achieving maximum power density at reasonable efficiency (i.e. > 80%) by operating at the highest resonant and switching frequencies possible. A resonant frequency of 392-kHz was achieved while providing rated power. The high resonant frequency was facilitated by the development of an extremely low inductance layout (< 20 nH) capable of conducting the high resonant currents associated with this converter topology. A design methodology is presented for parallel-loaded, resonant voltage boost converters utilizing the development of a converter prototype as a basis. The experimental results are presented as validation of the methodology.
2

Low-Frequency Series Loaded Resonant Inverter Characterization

Medina, Alfredo 01 June 2016 (has links)
Modern power systems require multiple conversions between DC and AC to deliver power from renewable energy sources. Recent growth in DC loads result in increased system costs and reduced efficiency, due to redundant conversions. Advances in DC microgrid systems demonstrate superior performance by reducing conversion stages. The literature reveals practical DC microgrid systems composed of wind and solar power to replace existing fossil fuel technologies for residential consumers. Although higher efficiencies are achieved, some household appliances require AC power; thus, the need for highly efficient DC to AC converters is imperative in establishing DC microgrid systems. Resonant inverter topologies exhibit zero current switching (ZCS); hence, eliminate switching losses leading to higher efficiencies in comparison to hard switched topologies. Resonant inverters suffer severe limitations mainly attributed to a load dependent resonant frequency. Recent advancements in power electronics propose an electronically tunable inductor suited for low frequency applications [24], [25]; as a consequence, frequency stability in resonant inverters is achievable within a limited load range. This thesis characterizes the operational characteristics of a low-frequency series loaded resonant inverter using a manually tunable inductor to achieve frequency stability and determine feasibility of utilization. Simulation and hardware results demonstrate elimination of switching losses via ZCS; however, significant losses are observed in the resonant inductor which compromises overall system efficiency. Additionally, harmonic distortion severely impacts output power quality and limits practical applications.
3

High Frequency Effects of Variable Frequency Drives (VFD) on Electrical Submersible Pump (ESP) Systems

Ozkentli, Esra 2012 August 1900 (has links)
Variable frequency drives (VFD) and subsea (umbilical) cables are frequently used in electrical submersible pump (ESP) systems for offshore platforms. There are two basic system configurations for ESP systems; VFD can be installed on the platform and the motor is connected to it through an umbilical cable, and VFD and the motor are installed closely and they are connected to the system through an umbilical cable. In this thesis, the pros and cons of each configuration are mentioned, but the focus is on the system with a VFD controlled motor through a long umbilical cable. A 36-pulse VFD is studied. Since multilevel VFDs have high frequency harmonics, high frequency modeling of the umbilical cable is used, and skin effect is also taken into consideration in the cable. The effect of the interactions between the umbilical cable and high frequency harmonics on the motor terminal voltage is explored.
4

Analog Single Sideband-Pulse Width Modulation Processor for Parametric Acoustic Arrays

Marathe, Vikrant A 01 June 2019 (has links)
Parametric acoustic arrays are ultrasonic-based loudspeakers that produce highly directive audio. The audio must first be preprocessed and modulated into an ultrasonic carrier before being emitted into the air, where it will self-demodulate in the far field. The resulting audio wave is proportional to the double time-derivative of the square of the modulation envelope. This thesis presents a fully analog processor which encodes the audio into two Pulse Width Modulated (PWM) signals in quadrature phase and sums them together to produce a Single Sideband (SSB) spectrum around the fundamental frequency of the PWM signals. The two signals are modulated between 8% and 24% duty cycle to maintain a quasi-linear relationship between the duty cycle and the output signal level. This also allows the signals to sum without overlapping each other, maintaining a two-level output. The system drives a network of narrowband transducers with a center frequency equal to the PWM fundamental. Because the transducers are voltage driven, they have a bandpass frequency response which behaves as a first-order integrator on the SSB signal, eliminating the need for two integrators in the processor. Results show that the “SSB-PWM” output wave has a consistent 20-30dB difference in magnitude between the upper sideband and lower sideband. In simulation, a single tone test shows higher total harmonic distortion for lower frequencies and higher modulation depth. A two-tone test creates a 2nd order intermodulation term that increases with the frequencies of the input signals.
5

Spínané zdroje / Switched Mode Power Supplies

Španěl, Petr January 2020 (has links)
This thesis deals with switched mode power supplies based on resonant principle to achieve high efficiency. Several ways of switched mode power supplies optimalisation are described as part of the work to achieve better efficiency. Priparily, the new generation of switching elements based on SiC and resonant topology are used to achieve significant switching loss minimization. The selected resonant topology is simualted in detail and then built with focus on high efficiency. The main content of the work consists in the design and realization of the switched mode power supply with selected control algorithms and their comparison. The problems associated with usage of new SiC MOSFET generation in TO-247-4L package are being solved within the design and implementation of the power source. To solve the main problems, new 3rd SiC MOSFET gate driver was developer for working with switching frequencies in hundreds of kHz and resisting very high voltage stress on the controlled transistor. The next part of the gate driver is the overcurrent protection. The overcurrent limit can be set easily by changing one component. This protection reacts very quickly in hundreds of nanoseconds, so it is capable of saving the converter even in branch failure and going to hard short circuit. The functional sample of the series resonant converter was built and revated in the work. The converter based on 3. Generation of SiC MOSFET transistors from Cree in a modern case TO-247-4L was built. For this inverter, it was also necessary to develop both the control scheme and the resonance frequency tracking to achieve accurate switching and thus achieve the use of the resonant principle of the converter to the maximum extent possible. The result of this work is up to 3 kW converter with adjustable output voltage while maintaining high efficiency up to 96%.

Page generated in 0.1773 seconds