• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 546
  • 137
  • 63
  • 35
  • 26
  • 18
  • 15
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • Tagged with
  • 1047
  • 180
  • 153
  • 134
  • 112
  • 103
  • 101
  • 92
  • 78
  • 77
  • 74
  • 67
  • 59
  • 56
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Impact of Medications Used in the Treatment of Mood Disorders on Monoaminergic Systems

Ghanbari, Ramez 14 March 2011 (has links)
While selective serotonin (5-HT) reuptake inhibitors (SSRIs) are utilized as the first-line strategy in treating depression, new approaches are still desired. Using in vivo electrophysiological techniques, the effects of co-administration of bupropion with the SSRI escitalopram on the firing rate of dorsal raphe 5-HT and locus coeruleus norepinephrine (NE) neurons were investigated. Escitalopram significantly decreased the firing of 5-HT and NE neurons at day 2. The 5-HT firing rate, unlike that of NE, recovered after the 14-day escitalopram regimen. Bupropion did not increase 5-HT firing but decreased that of NE after 2 days. Following 14-day bupropion, 5-HT firing was markedly enhanced, and NE firing was back to baseline. Co-administration of escitalopram and bupropion doubled 5-HT firing after 2 and 14 days, whereas NE neurons were inhibited after 2, but partially recovered after 14 days. Although sustained bupropion administration did not alter the sensitivity of 5-HT1A receptors in hippocampus, the tonic activation of postsynaptic 5-HT1A receptors was enhanced in 14-day bupropion-treated rats to a greater extent than in the 2-day and control rats. The function of terminal 5-HT1B autoreceptors was not changed. The inhibitory action of α2-adrenergic receptors on 5-HT terminals was, however, diminished. The function of terminal α2-adrenergic autoreceptors was also attenuated in rats given bupropion for 14 days. Administration of the antidepressant trazodone suppressed the 5-HT firing at day 2, which recovered to baseline following 14 days. Prolonged trazodone-administration enhanced the tonic activation of postsynaptic 5-HT1A receptors in hippocampus, and decreased the function of terminal 5-HT1B autoreceptors. Finally, a novel psychotropic agent asenapine showed potent antagonistic activity at 5-HT2A, D2, and α2-adrenoceptors. Asenapine, however, acted as a partial agonist at 5-HT1A receptors in dorsal raphe and hippocampus. Overall, the therapeutic effects of various antidepressants may be, at least in part, due to the enhancement of 5-HT and/or NE neurotransmission.
182

Effects of serotonin on the agonistic behavior in paradise fish (Macropodus opercularis Linnaeus)

Chiu, Kuo-Hsun 07 December 2002 (has links)
Animal agonistic behaviors, including threat, combat, submission and chase, are complex responses to experimental stimuli. Animal behaviors are regulated by the central nervous system. In the central nervous system, the biogenic amine serotonin has been thought to serve important roles in animal aggression (including fish), but it¡¦s not clear if serotonin affects threatening and fighting differently. This study took experimental approaches to examine the effects of this neurotransmitter on threatening and fighting in a paradise-fish model in which the complex agonistic behavior is well characterized. Treatments with serotonin synthesis precursor tryptophan (0.125mg/g) to one of the two contestants had insignificant effects on threatening or fighting while synthesis blocker p-Chlorophenylalanine (PCPA) (0.3mg/g) decreased threatening time and occurrences of head-tail display. When these drugs were added to both contestants, tryptophan reduced all agonistic behavioral patterns displays, and PCPA decreased threatening time and head-tail display. In addition to changes in behavioral patterns, tryptophan led the fish to be attacked. In contrast, PCPA led the injected fish to actively attack its opponent. However, tryptophan and PCPA had no effect on social status in parasise fish. I suggest that agonistic responses and the initial fighting decision in a paradise fish are affected not only by level of its serotonin, but also by the behavioral responses of its opponent. And the establishment of outcome of encounter is affected more by the environmental stimuli than the serotonin level.
183

The serotonin transporter gene's association with mental disorders a meta analysis /

Brown, Jessica S., Joiner, Thomas E. January 2003 (has links)
Thesis (M.S.)--Florida State University, 2003. / Advisor: Dr. Thomas E. Joiner, Florida State University, College of Arts and Sciences, Dept. of Psychology. Title and description from dissertation home page (viewed Mar. 02, 2003). Includes bibliographical references.
184

The effects of branched-chain amino acid supplementation on the exercise time to exhaustion in sedentary individuals

Cowman, Jason. Haymes, Emily M., January 2003 (has links)
Thesis (M.S.)--Florida State University, 2003. / Advisor: Dr. Emily Haymes, Florida State University, College of Human Sciences, Dept. of Nutrition, Food, and Exercise Science. Title and description from dissertation home page (viewed Feb. 26, 2004). Includes bibliographical references.
185

Imaging Anxiety : Neurochemistry in Anxiety Disorders Assessed by Positron Emission Tomography

Frick, Andreas January 2015 (has links)
Anxiety disorders, including social anxiety disorder (SAD) and posttraumatic stress disorder (PTSD) are common and disabling conditions. Largely based on animal and pharmacological studies, both the serotonergic and substance P/neurokinin-1 (SP/NK1) systems have been implicated in their underlying pathology. However, only few neuroimaging studies have directly assessed these neurotransmitter systems in human sufferers of anxiety disorders, and none have addressed possible between-systems relationships. The overall aim of this thesis was to study possible neurochemical alterations associated with anxiety disorders. To this end, three studies using positron emission tomography (PET) for in-vivo imaging of the brain serotonergic and SP/NK1 systems in patients with SAD and PTSD were conducted. The radiotracers [11C]5-HTP, [11C]DASB, and [11C]GR205171 were used to index serotonin synthesis rate, serotonin transporter (SERT) availability, and NK1 receptor availability respectively. In Study I, patients with SAD relative to controls exhibited enhanced serotonin synthesis rate and serotonin transporter availability. Serotonin synthesis rate in the amygdala was positively related to social anxiety symptom scores. Study II demonstrated increased NK1 receptor availability in the amygdala in patients with SAD relative to controls. In Study III, patients with PTSD showed elevated NK1 receptor availability in the amygdala as compared to controls. SERT availability in the amygdala was negatively related to PTSD symptom severity, a relationship that was moderated by NK1 receptor levels. The regional overlap between SERT and NK1 receptor expression was altered in patients with PTSD, with reduced overlap linked to more severe symptoms. Collectively, the findings are consistent with the view that serotonin in the amygdala induces rather than reduces anxiety and links exaggerated anxiety to an overactive presynaptic serotonin system. In addition, the involvement of the SP/NK1 system in stress and anxiety, as suggested by animal studies, was demonstrated in two common human anxiety disorders. Finally, PTSD symptomatology is better accounted for by interactions between the serotonergic and SP/NK1 systems in the amygdala than by each system separately. In conclusion, this thesis supports that both the serotonergic and SP/NK1 systems in and of themselves, but also interactively, may be important contributors to anxiety symptomatology.
186

Mechanistic study of circadian rhythms of tryptophan hydroxylase and serotonin receptors involved in acupuncture-induced analgesia

Wang, Zuhao., 汪祖昊. January 2011 (has links)
published_or_final_version / Chinese Medicine / Master / Master of Philosophy
187

The role of platelet-derived molecules: PDGF and serotonin in the regulation of megakaryopoiesis

Ye, Jieyu., 叶洁瑜. January 2011 (has links)
Investigations on platelet-derived growth factor (PDGF) and serotonin (5-HT), molecules stored in platelet granules, imply their potential effects in regulating megakaryopoiesis, which also intimates the existence of an autocrine and/or paracrine loop constructed by megakaryocytes/platelets and their granular constituents. In addition, numerous reports indicate that melatonin, a derivative from serotonin effectively enhances platelet counts in patients with thrombocytopenia. However, their exact roles on human megakaryocytes and the underlying mechanisms remain unknown. Present studies showed that PDGF, like thrombopoietin (TPO), significantly promoted platelet recovery and the formation of bone marrow colony-forming unit-megakaryocyte (CFU-MK) in an irradiated-mouse model. An increased number of hematopoietic stem/progenitor cells and a reduction of apoptosis were found in the bone marrow aspirate. In the M-07e apoptotic model, PDGF had a similar anti-apoptotic effect as TPO on megakaryocytes. Our findings demonstrated that PDGF activated the PI3-k/Akt signaling pathway, while addition of imatinib mesylate reduced p-Akt expression. Our findings suggested that the PDGF-initiated radioprotective effect is likely to be mediated via PDGF receptors (PDGFRs) with subsequent activation of the PI3-k/Akt pathway. We also provide a possible explanation that blockade of PDGFR may reduce thrombopoiesis and play a role in imatinib mesylate-induced thrombocytopenia. We explored how serotonin regulated megakaryopoiesis and proplatelet formation. Our results indicated that serotonin (5-HT) significantly promoted CFU-MK formation and reduced apoptosis on megakaryocytes through phosphorylation of Akt. These effects were attenuated by addition of ketanserin, a 5-HT2 receptor inhibitor. In addition, serotonin was able to stimulate the F-actin reorganization in megakaryocytes through activating the p-Erk1/2 expression. Bone marrow mesenchymal stromal cells (MSCs) are important in regulating megakaryopoiesis through stimulating the release of thrombopoietic growth factor, such as TPO. Our studies suggested that when activated by serotonin, bone marrow MSCs were induced to release significant amount of TPO. Furthermore, thousands of membrane-derived microparticles (MPs) arose from MSCs and the TPO RNA/proteins contained within MPs were also considerably increased under serotonin treatment. In summary, our findings demonstrated an important role serotonin played on megakaryopoiesis. This effect was likely mediated via 5HT2 receptors with subsequent activation of Akt and Erk 1/2 phosphorylation, which led to survival of megakaryocytes and proplatelet formation. Serotonin also stimulated TPO released from MSCs in both dissociative and MP-encapsulated form, which indirectly promoted megakaryopoiesis. The effects of melatonin on megakaryopoiesis were also determined in our studies. Our findings showed that melatonin enhanced proliferation and reduced doxorubicin-induced toxicity on MKs. We further demonstrated the mechanism for melatonin-mediated protection on MKs maybe via repair of G2/M phase cell cycle arrest and inhibition of cell apoptosis on MK cells. The effects of melatonin on megakaryopoiesis were also determined in our studies. Our findings showed that melatonin enhanced proliferation and reduced doxorubicin-induced toxicity on MKs. We further demonstrated the mechanism for melatonin-mediated protection on MKs maybe via repair of G2/M phase cell cycle arrest and inhibition of cell apoptosis on MK cells. / published_or_final_version / Paediatrics and Adolescent Medicine / Doctoral / Doctor of Philosophy
188

SEROTONIN RECEPTOR BINDING: CHARACTERIZATION OF SEROTONIN₁ RECEPTOR SUBTYPES

Waters, Stephen Joseph January 1984 (has links)
No description available.
189

The Heritability Of And Genetic Contributions To, Frontal Electroencephalography

Bismark, Andrew W. January 2014 (has links)
The heritability of frontal EEG asymmetry, a potential endophenotype for depression, was investigated using a large set of adolescent and young adult twins. Additionally, the relationship between polymorphisms within three serotonin genes, two receptor genes and one transporter gene, and frontal EEG asymmetry was also investigated. Using Falconer's estimate, frontal EEG asymmetry was shown to be more heritable at lateral compared to medial cites across nearly all reference montages, and greater in males compared to females. Using structural equation modeling (SEM), and investigating both additive (ACE) and non-additive (ADE) models of genetic heritability, males displayed consistently greater additive genetic contributions to heritability, with greater lateral contributions than medial ones. For female twins pairs, the additive genetic model data provided a mixed picture, with more consistent heritability estimates observed at medial sites, but with larger estimates shown at lateral channels. For non-additive genetic models, male twin pairs demonstrated exclusive non-additive contributions to heritability across channels within AVG and CZ referenced data, with metrics in the CSD and LM montages more mixed between additive and non-additive contributions. However, consistent with Falconer's estimates, lateral channels were nearly always estimated to be more heritable than medial channels regardless of gender. These models demonstrate some combination of additive and non-additive contributions to the heritability of frontal EEG asymmetry, with the CSD and AVG montages showing greater lateral compared to medial heritability and CZ and LM montages showing mixed contributions with additive heritability at lateral channels and non-additive primarily at medial channels. The complex interaction of gender and reference montage on the heritability estimates highlight the subtle yet important roles of age, gender, and recording methodology when investigating proposed endophenotypes. However, no association was found between the proposed polymorphisms in serotonin receptor 1a, 2a or serotonin transporter genes and frontal EEG asymmetry. Although the results support modest heritability of frontal EEG asymmetry, the proposed link to underlying serotonergic genetic markers remains an open question. Overall, these results indicate that frontal asymmetry may be a useful endophenotype for depressive risk with modest heritability, but is one that taps more environmental risk.
190

Voltammetric Measurements Of Tonic And Phasic Neurotransmission

Atcherley, Christopher Wade January 2014 (has links)
To understand how the brain functions and what disruptions underlie neurological diseases and disorders, analytical methods are needed that can succeed in the complexity of the native brain environment. To make a measurement in functioning, live tissue, these methods must be selective for specific analytes in a matrix that has over 1000 different chemical species, be able to measure chemical changes on multiple timescales (10-3 s to 104 s), have a high spatial resolution (μm), and be sensitive (pM to μM). The work described within, details the development and application of a voltammetric method, fast-scan controlled adsorption voltammetry (FSCAV) that is capable of monitoring baseline levels of serotonin and dopamine, as well as monitoring changes on multiple time scales with high sensitivity and selectivity. Because FSCAV is performed using a carbon-fiber microelectrode, the same sensor can be used for fast-scan cyclic voltammetry to monitor rapid (phasic) changes of dopamine and serotonin in the extracellular space. Thus a single-sensor strategy for measuring tonic and phasic concentrations of these important neurotransmitters is developed and used to elucidate important insight into the differences of serotonin and dopamine regulation. Additionally it is revealed that dopamine exhibits a coaction between tonic and phasic signaling where serotonin does not. Using this approach, a method for evaluating pain processing in a preclinical model is developed, which reveals an important relationship between chronic pain and dopamine signaling. Furthermore, a mathematical model to describe mass-transport limited adsorption is developed and used to determine the diffusion coefficient of both dopamine and serotonin in situ. The work described within details an important advancement in neuroanalytical methodology that will provide new insights both short-term and long-term for studying fundamental chemical mechanisms of neurotransmission.

Page generated in 0.1053 seconds