• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel Legged Robots with a Serpentine Robotic Tail: Modeling, Control, and Implementations

Liu, Yujiong 15 June 2022 (has links)
Tails are frequently utilized by animals to enhance their motion agility, dexterity, and versatility, such as a cheetah using its tail to change its body orientation while its legs are all off the ground and a monkey using its tail to stabilize its locomotion on branches. However, limited by technology and application scenarios, most existing legged robots do not include a robotic tail on board. This research aims to explore the possibilities of adding this missing part on legged robots and investigate the tail's functionalities on enhancing the agility, dexterity, and versatility of legged locomotion. In particular, this research focuses on animal-like serpentine tail structure, due to its larger workspace and higher dexterity. The overall research approach consists of two branches: a theoretical branch that focuses on dynamic modeling, analysis, and control of the legged robots with a serpentine robotic tail; and an empirical branch that focuses on hardware development and experiments of novel serpentine robotic tails and novel legged robots with tail. More specifically, the theoretical work includes modeling and control of a general quadruped platform and a general biped platform, equipped with one of the two general serpentine tail structures: an articulated-structure tail or a continuum-structure tail. Virtual work principle-based formulation was used to formulate the dynamic model. Both classic feedback linearization-based control and optimization-based control were used to coordinate the leg motions and the tail motion. Comparative studies on different tail structures as well as numerical analyses on robotic locomotion were performed to investigate the dynamic effects of serpentine robotic tails. The empirical work includes the developments and experiments of two novel serpentine robotic tail mechanisms and one first-of-its-kind quadruped robot ("VT Lemur") equipped with a serpentine robotic tail. To develop these novel robots, a systematic approach based on dynamic analysis was used. Various experiments were then conducted using the robot hardware. Both the theoretical and empirical results showed that the serpentine robotic tail has significant effects on enhancing the agility, dexterity, and versatility of legged robot motion. / Doctor of Philosophy / Quadruped robots have made impressive progresses over the past decade and now can easily achieve complicated, highly dynamic motions, such as the backflip of the MIT Mini Cheetah robot and the gymnastic parkour motions of the Atlas robot from Boston Dynamics, Inc. However, by looking at nature, many animals use tails to achieve highly agile and dexterous motions. For instance, monkeys are observed to use their tails to grasp branches and to balance their bodies during walking. Kangaroos are found to use their tails as additional limbs to propel and assist their locomotion. Cheetahs and kangaroo rats are thought to use their tails to help maneuvering. Therefore, this research aims to understand the fundamental principles behind these biological observations and develop novel legged robots equipped with a serpentine robotic tail. More specifically, this research aims to answer three key questions: (1) what are the functional benefits of adding a serpentine robotic tail to assist legged locomotion, (2) how do animals control their tail motion, and (3) how could we learn from these findings and enhance the agility, dexterity, and versatility of existing legged robots. To answer these questions, both theoretical investigations and experimental hardware testing were performed. The theoretical work establishes general dynamic models of legged robots with either an articulated tail or a continuum tail. A corresponding motion control framework was also developed to coordinate the leg and tail motions. To verify the proposed theoretical framework, a novel quadruped robot with a serpentine robotic tail was developed and tested.

Page generated in 0.0955 seconds