Spelling suggestions: "subject:"sesquiterpenes (bsynthesis)"" "subject:"sesquiterpenes (csynthesis)""
1 |
Synthesis of furanoeremophilane sesquiterpenoidsShanmugham, Meenakshi Sundaram 13 January 2004 (has links)
Two approaches to the tricyclic core of the furanoeremophilane
sesquiterpenoids are described. The first approach entails a projected Diels-Alder/retro Diels-Alder reaction of an acetylenic oxazole 64. Construction of
the pivotal aldehyde 67 commenced from ketone 68. The acetyenic moiety
was then introduced via a Felkin-Ahn addition of lithiopropyne to aldehyde 67.
The final conversion of the cyclohexanone 83 to the acetylenic triflate 65 was
unsuccessful. Attempts at addition of lithiated 2-methyloxazole 88 to ketone 83
were also unsuccessful.
The second approach exploited a new annulation strategy. The
aldehyde 64 was advanced to the 2, 4, 6-triisopropylbenzene
sulfonylhydrazone 102 and a Shapiro reaction of 102 then provided alcohol
96. The furyl stananne 114 was readily prepared via a six-step sequence from
acetylacetaldehyde dimethyl acetal 106. Unification of allylic bromide 90 and
stannane 114 was accomplished through a Stille cross coupling methodology
and the resulting product 113 was advanced to the aldehyde 116. However,
attempts at further oxidation of this aldehyde to the required acid 89 failed. An
alternative furyl stananne 124 with a tert-butyldimethylsilyl substituent at the
C2 position was prepared from 3-furoic acid. An analogous sequence to that
used with 113 led to aldehyde 131 which was successfully cyclized with the
aid of trimethylsilyl trifluromethanesulfonate and 2, 6-lutidine to the tricyclic
structure 132. Oxidation of the epimeric mixture of alcohols, followed by
stereoselective reduction and removal of the tert-butyldimethylsilyl group from
alcohol 134, gave (±)-6β-hydroxyeuroposin (4). Oxidation experiments with
134 were shown to convert the furan in this structure to a butenolide
characteristic of the eremophilenolides. / Graduation date: 2004
|
2 |
Estudos visando à síntese de sesquiterpenos bacanos / Studies toward the synthesis of sesquiterpenes bakkanesVieira, Tiago de Oliveira 30 September 2005 (has links)
Nesta tese, efetuamos estudos visando à síntese de sesquiterpenos bacanos, cuja etapa chave consistiu na construção do sistema cis-hidrindânico, através de reação de contração de anel de cis-octalinas e 2-octalonas mediada por trinitrato de tálio (TTN). Apenas as cis-octalinas como, por exemplo, o cis-4a-metil-l,2,3,4,4a,5,8,8a-octahidronaftaleno e o cis-4a, 7-dimetil-l,2,3,4,4a,5,8,8a-octa-hidronaftaleno, foram passíveis de reação de contração de anel em rendimentos satisfatórios; já a cis-5,10-dimetil-l(9)-octal-2-ona levou ao produto de contração em baixo rendimento. Tentamos utilizar a reação de cis-4a-metil-l,2,3,4,4a,5,8,8a-octa-hidronaftaleno com TTN na síntese da nor-baquenolida-A, porém não conseguimos completar a síntese desta, pois não foi possível efetuar a última etapa sintética, nas várias abordagens testadas. Grandes esforços também foram empregados na preparação diastereosseletiva da cis-5,10-dimetil-l(9)-octal-2-ona através de três abordagens diferentes que foram investigadas, sendo duas delas com êxito. Contudo, o baixo rendimento (38%) da etapa de contração de anel da cis-5,10-dimetil-l(9)-octal-2-ona não permitiu a continuação da rota sintética proposta para a baquenolida-A. Também realizamos a resolução cinética de três diferentes cis-octalóis que foram preparados através da reação de Diels-Alder seguida de redução diastereosseletiva - com a lipase Novozym 435, e os produtos resolvidos foram obtidos em excelentes rendimentos isolados (≥ 40% para cada enantiômero) e excelentes excessos enantioméricos (≥ 98%). / In this thesis, we have developed studies towards the synthesis of sesquiterpenes bakkanes, which key step consisted on the construction of the cis-hydrindanic system through a thallium(III) mediated ring contraction reaction of cis-decalins and 2-octalones. Only the cis-octalins, such as the 1,2,3,4,4a,5,8,8a-octahydro-4a-methylnaphthalene and the 1,2,3,4,4a,5,8,8a-octahydro-4a,7-dimethylnaphthalene, were able to be ring contracted in satisfactory yields; the 4,4a,5,6,7,8-hexahydro-4a,5-dimethylnaphthalen-2(3H)-one, however, furnished the ring contraction product in low yield. We tried to use the reaction of 1,2,3,4,4a,5,8,8a-octahydro-4amethylnaphthalene with TTN in the synthesis of nor-bakkenolide-A, but we could not accomplish the synthesis because it was not possible to make the last step of the sequence, in all tested approaches. Great efforts were made in the diastereoselective preparation of the 4,4a,5,6, 7 ,8-hexahydro-4a,5-dimethylnaphthalen-2(3H)-one, through three different approaches that were investigated, being two of them with profit. However, the low yield (38%) of the ring contraction reaction of 4,4a,5,6, 7,8-hexahydro-4a,5-dimethylnaphthalen-2(3H)-one, precluded the continuation of the synthetic rout proposed to the bakkenolide-A. We have also performed the kinetic resolution of three different cis-octalols that were prepared through Diels-Alder reaction followed by diastereoselective reduction - with the Novozym 435 lipase, and the resolved products were isolated in excellent yields (≥ 40% for each enantiomer) and excellent ee\'s (≥ 98%).
|
3 |
Strategies for the Synthesis of Sesquiterpene Natural ProductsEagan, James January 2014 (has links)
Chapter 1. Ring-Opening Knoevenagel Strategy for the Synthesis of Alpha-Carboalkoxy Cyclopentenones and Their Use in the Diels-Alder Cycloaddition.
The Diels-Alder reaction has enabled the synthesis of hundreds of natural products efficiently and with high levels of stereocontrol. Despite over eight decades of development, this reaction is incapable of forming hydrindane ring junctions from alphahydro beta-alkyl cyclopentenones. As such, we used alpha-carboalkoxy cyclopentenones as synergistic dienophiles, but exposed a lack of synthetic tools for assembling strained bicyclic cyclopentenones. We addressed this paucity by developing a ring-opening Knoevenagel reaction for synthesizing these synergistic dienophiles with varying degrees of substitution. The 6 step protecting group free total synthesis of a structurally similar natural product merrekentrone D was achieved to demonstrate the utility of the new method. In addition, the Diels-Alder cycloaddition with these molecules with the Danishefsky-Kitahara diene were studied. The variability of the ring-opening Knoevenagel reaction also led to the development of a decarboxylative Diels-Alder cycloaddition which is degenerate with the alpha-hydro beta-alkyl cyclopentenone Diels- Alder reaction. The hydrindane structures are referred to as iso-Hajos-Parrish ketones which we subsequently demonstrate as powerful building blocks for natural product total synthesis.
Chapter 2. Synthetic Studies Towards the Shizukaol Family of Oligomeric Sesquiterpene Natural Products
The shizukaol family of oligomeric natural products are one of three oligomeric sesquiterpene families. Three different generations of synthetic strategies towards the unstable and dimeric precursor lindenatriene were studied. The use of the iso-Hajos-Parrish ketone enabled a 10 step, protecting group free, total synthesis of the intermediate. In addition the formation of unnatural dimers was achieved as well as several unexpected results which led to the generalization of our strategy to other natural product families.
Chapter 3. Iso-Hajos-Parrish Ketones: Common Intermediates for Sesquiterpene Total Syntheses
The three step synthesis of the cyclopropane substituted iso-Hajos-Parrish ketone enabled rapid access to other sesquiterpene families. Through reductase phases the total synthesis of sarcandralactone was achieved in 10 steps without the use of any protecting groups. Studies were also conducted towards achieving the trans-hydrindane ring as a synthetic equivalent to a trans-Diels-Alder paradigm, which was not realized. Additionally, cyclopropane opening of the iso-Hajos-Parrish ketone led to highly oxidized eudesmane skeletons. Our attempts to hydrogenate these molecules in the reductase phase inspired a 6 step total synthesis of des-methyl pinguisone with a strikingly different sesquiterpene framework. Finally, an analysis of redox conservation in total synthesis and the generality of this chemistry to the total synthesis of sesquiterpene natural products will be presented.
|
4 |
Synthetic studies on natural products : Part I. The total synthesis of ��-euonyminol and ��-3,4-dideoxymaytol : Part II. The absolute configuration and enantioselective synthesis of curacin AKim, Tae-Seong 22 May 1996 (has links)
Graduation date: 1997
|
5 |
Synthetic studies on marine natural products : Part 1. Synthesis of the sesquiterpenoid dihydropallescensin D via manganese(III)- mediated carbocyclization. Part 2. Approaches toward the synthesis of prianosin and discorhabdin alkaloidsYager, Kraig M. 16 March 1993 (has links)
Graduation date: 1993
|
6 |
Estudos visando à síntese de sesquiterpenos bacanos / Studies toward the synthesis of sesquiterpenes bakkanesTiago de Oliveira Vieira 30 September 2005 (has links)
Nesta tese, efetuamos estudos visando à síntese de sesquiterpenos bacanos, cuja etapa chave consistiu na construção do sistema cis-hidrindânico, através de reação de contração de anel de cis-octalinas e 2-octalonas mediada por trinitrato de tálio (TTN). Apenas as cis-octalinas como, por exemplo, o cis-4a-metil-l,2,3,4,4a,5,8,8a-octahidronaftaleno e o cis-4a, 7-dimetil-l,2,3,4,4a,5,8,8a-octa-hidronaftaleno, foram passíveis de reação de contração de anel em rendimentos satisfatórios; já a cis-5,10-dimetil-l(9)-octal-2-ona levou ao produto de contração em baixo rendimento. Tentamos utilizar a reação de cis-4a-metil-l,2,3,4,4a,5,8,8a-octa-hidronaftaleno com TTN na síntese da nor-baquenolida-A, porém não conseguimos completar a síntese desta, pois não foi possível efetuar a última etapa sintética, nas várias abordagens testadas. Grandes esforços também foram empregados na preparação diastereosseletiva da cis-5,10-dimetil-l(9)-octal-2-ona através de três abordagens diferentes que foram investigadas, sendo duas delas com êxito. Contudo, o baixo rendimento (38%) da etapa de contração de anel da cis-5,10-dimetil-l(9)-octal-2-ona não permitiu a continuação da rota sintética proposta para a baquenolida-A. Também realizamos a resolução cinética de três diferentes cis-octalóis que foram preparados através da reação de Diels-Alder seguida de redução diastereosseletiva - com a lipase Novozym 435, e os produtos resolvidos foram obtidos em excelentes rendimentos isolados (≥ 40% para cada enantiômero) e excelentes excessos enantioméricos (≥ 98%). / In this thesis, we have developed studies towards the synthesis of sesquiterpenes bakkanes, which key step consisted on the construction of the cis-hydrindanic system through a thallium(III) mediated ring contraction reaction of cis-decalins and 2-octalones. Only the cis-octalins, such as the 1,2,3,4,4a,5,8,8a-octahydro-4a-methylnaphthalene and the 1,2,3,4,4a,5,8,8a-octahydro-4a,7-dimethylnaphthalene, were able to be ring contracted in satisfactory yields; the 4,4a,5,6,7,8-hexahydro-4a,5-dimethylnaphthalen-2(3H)-one, however, furnished the ring contraction product in low yield. We tried to use the reaction of 1,2,3,4,4a,5,8,8a-octahydro-4amethylnaphthalene with TTN in the synthesis of nor-bakkenolide-A, but we could not accomplish the synthesis because it was not possible to make the last step of the sequence, in all tested approaches. Great efforts were made in the diastereoselective preparation of the 4,4a,5,6, 7 ,8-hexahydro-4a,5-dimethylnaphthalen-2(3H)-one, through three different approaches that were investigated, being two of them with profit. However, the low yield (38%) of the ring contraction reaction of 4,4a,5,6, 7,8-hexahydro-4a,5-dimethylnaphthalen-2(3H)-one, precluded the continuation of the synthetic rout proposed to the bakkenolide-A. We have also performed the kinetic resolution of three different cis-octalols that were prepared through Diels-Alder reaction followed by diastereoselective reduction - with the Novozym 435 lipase, and the resolved products were isolated in excellent yields (≥ 40% for each enantiomer) and excellent ee\'s (≥ 98%).
|
7 |
Total Synthesis Of Sesquiterpenes Acorenols, Chamigrenes And Laurokamurene B; And Enantiospecific Synthesis Of ABC-Ring System Of A-Nor And Abeo Pentacyclic TriterpenesBabu, R Ramesh 10 1900 (has links)
Among Nature’s creation, terpenoids are more versatile and exciting natural products. In a remarkable display of synthetic ingenuity and creativity, nature has endowed terpenes with a bewildering array of carbocyclic frameworks with unusual assemblage of rings and functionalities. This phenomenal structural diversity of terpenes make them ideal targets for developing and testing new synthetic strategies for efficient articulation of carbocyclic frameworks. The thesis entitled “Total synthesis of sesquiterpenes acorenols, chamigrenes, and laurokamurene B; and Enantiospecific synthesis of ABC-ring system of A-nor and abeo pentacyclic triterpenes” describes the studies directed towards the total synthesis of the sesquiterpenes mentioned in the title and exploratory studies towards triterpenoids. In each chapter of the thesis, the compounds are sequentially numbered (bold) and references are marked sequentially as superscripts and listed at the end of the chapter. All the spectra included in the thesis were obtained by xeroxing the original NMR spectra.
The sesquiterpenes acorenols, containing an interesting spiro[4.5]decane carbon framework, was first isolated in 1970 by the research group of Tomita from the wood of Juniperus rigida. Recently, in 2003, Braun and coworkers reported the isolation of epi α- and epi β-acorenols along with α- and β-acorenols from the sandal wood oil Santalum spicatum. Total synthesis of all the four acorenols has been described in the first part of the first chapter of the thesis. Initially, a model study has been carried out for the spirocyclopentannulation of cyclohexanone employing a combination of Ireland ester Claisen rearrangement and ring closing metathesis reaction to furnish methyl 4-methylspiro[4.5]dec-3-en-1-carboxylate. The same methodology has been extended for the total synthesis of all the four acorenols starting from cyclohexane-1,4-dione via cis and trans isomers of methyl 4-methyl-8-methylene-spiro[4.5]dec-3-ene-1-carboxylate.
Total synthesis of β-chamigrene, γ-chamigrene and laurencenone C, containing spiro[5.5]undecane carbon framework, has been described in the second part of the first chapter. As a model study, cyclohexanone has been transformed into 1,5,5-trimethylspiro-[5.5]undec-4-en-3-one employing a combination of Ireland ester Claisen rearrangement and intramolecular type-II carbonyl ene reactions. The methodology has been extended to
chamigrenes starting from cyclohexane-1,4-dione via methyl 2-(1-isopropenyl-4-oxocyclo-hexyl)-2-methylpropanoate and 5,5-dimethyl-1,9-ismethylenespiro[5.5]undecan-3-ol.
The marine sesquiterpenes laurokamurenes were first isolated in 2006 by Mao and Guo from Laurencia okamurai Yamada. First total synthesis of (±)-laurokamurene B has been described in the first part of the second chapter. To begin with Ireland ester Claisen rearrangement of but-2-enyl 2-methylpropionate furnished methyl 2,2,3-trimethylpent-4-enoate, which was then transformed into 4,5,5-trimethyl-3-(4-methylphenyl)hepta-1,6-dien-3-ol. RCM reaction followed by reductive deoxygeneation transformed 4,5,5-trimethyl-3-(4-methylphenyl)hepta-1,6-dien-3-ol into (±)-laurokamurene B. Subsequently, an enantioselective total synthesis of (+)-laurokamurene B has been accomplished. Stereoselective hydrogenation of methyl campholenoate furnished methyl 2-[(1S,3S)-2,2,3-trimethyl-cyclopent-1-yl]acetate, which was then transformed into (+)-laurokamurene B via degradation of the two carbon side chain and introduction of the aryl moiety, which established the absolute configuration of laurokamurenes.
The third chapter deals with the enantiospecific generation of ABC-ring system of A-nor and abeo 4(3 → 2) tetra and pentacyclic triterpenes. To begin with (R)-carvone was identified as B-ring of ABC-ring system of A-nor and abeo tetra and pentacyclic triterpenes, as the absolute configuration at the C-5 position of the targets correlate to the stereo centre of carvone, and isopropenyl group can serve as the C-4 carbon of the targets along with the two gem-dimethyl groups. A lithium liquid ammonia mediated cyclisation of δ,ε-unsaturated esters was employed for the construction of the A ring and an RCM reaction was opted for the construction of the C ring. (R)-Carvone has been converted into 2-(1-ethoxyethoxy)-1,3,7,7-tetramethylbicyclo[4.3.0]non-3-en-8-ol via lithium liquid ammonia mediated cyclisation of methyl 2-(1-ethoxyethoxy)-6-isopropenyl-1,3-dimethylcyclohex-3-enyl]acetate, which was then transformed into 4-methoxymethoxy-2,5,5,9-tetramethyltricyclo[7.4.0.02,6]tridec-11-en-8-one via the RCM reaction of 3,4-bisallyl-8-methoxymethoxy-4,6,9,9-tetramethylbicyclo-[4.3.0]nonan-3-one. The strategy has been further extended to the synthesis of 4-methylene-2,5,5,9-tetramethyltricyclo[7.4.0.02,6]tridec-11-en-8-one, which contains the ABC ring system of abeo 4(3→2) tetra and pentacyclic triterpenes.
|
8 |
Synthesis Of 6-Epijunicedranol ; Spirocyclopentannulation Strategies ; And Exploratory Studies Towards Chiral TaxanesPraveen Kumar, P 04 1900 (has links) (PDF)
No description available.
|
9 |
Synthesis Of Sesquiterpenes Containing Two Vicinal Quaternary Carbon AtomsRao, M Srinivasa 05 1900 (has links)
Among nature's creation, terpenoids are more versatile and exciting natural products. In a remarkable display of synthetic ingenuity and creativity, nature has endowed terpenes, more so sesquiterpenes, with a bewildering array of carbocyclic frameworks with unusual assemblage of rings and functionality. This phenomenal structural diversity of this class of natural products makes them ideal targets for developing and testing new synthetic strategies for efficient articulation of carbocyclic frameworks. The present thesis entitled "Synthesis of sesquiterpenes containing two vicinal quaternary carbon atoms" describes the synthesis of a number of herbertane sesquiterpenoids, antimicrobial sesquiterpenes enokipodins A and Bf and spirocyclic sesquiterpenes acorone and isoacorones based on ring-closing metathesis reaction. In the thesis, the compounds are sequentially numbered (bold), and references are marked sequentially as superscript and listed at the end of thesis. All the figures included in-the thesis were obtained by DIRECT XEROX OF THE ORIGINAL NMR SPECTRA, and in some of them uninformative areas have been cut to save the space.
The herbertane sesquiterpenes are relatively a new class of aromatic sesquiterpenes, containing sterically crowded l-aryl-l,2,2-trimethylcyclopentane carbon framework incorporating two vicinal quaternary carbon atoms on a cyclopentane ring. The sterically crowded molecular framework coupled with the novel biological properties associated with the phenolic herbertanes made the herbertenoids challenging synthetic targets. In the present investigations, to begin with, a formal total synthesis of (±)-herbertenediol and (±)~ mastigophorenes A-D was developed starting from vanillin, based on a combination of Wacker oxidation and intramolecular aldol reactions.
A general ring-closing metathesis (RCM) based methodology was developed for a-cuparenone and the herbertane sesquiterpenes herbertene, a-herbertenol, f)~herbertenol and herbertenediol starting from the appropriately substituted acetophenones. The acetophenones on Horner-Wadsworth-Emmons reaction followed by regioselective reduction generated 5-arylbut-2-enols, which on Claisen rearrangement furnished 3~aryl-3-methylpent-4-enals. Grignard reaction with vinylmagnesium bromide followed by RCM reaction and oxidation transformed 3-aryl-3-methylpent~4-enals into 4~aryl-4-methylcylopentenones, which were further transformed into 3-aryl-2,2,3-trimethylcyclopentanones, thus, completing the formal synthesis of the sesquiterpenes (±)-a-cuparenone, (±)-herbertene, (±)-a-herbertenol, (±)-pherbertenol and (±)'herbertenediol.
In continuation of the synthesis of herbertane sesquiterpenes, a Claisen rearrangement and RCM reaction based strategy was developed for the synthesis of (±)~lt14-herbertenediol and (±)-71-epi-herbertenolide, and marine sesquiterpenes {£)-tochuinyl acetate and (±)-dihydrotochuinyl acetate. Ortho ester Claisen rearrangement of 3-arylbut-2~ enols generated 3-aryl~3-methylpent-4-enoates, which on allylation and RCM reactions generated 2~methyl-2-arylcyclopent-3-encarboxylates. Stereoselective alkylation followed by functional group manipulations transformed 2-methyl'2-arylcyclopent'3-encarboxylates into the marine sesquiterpenes (±)-tochuinyl acetate and (±)-dihydrotochuinyl acetate, (±)-ll-epiherbertenolide and (±)~l,,14-herbertenediol.
Total synthesis of (±)-lt13-herbertenediol has been accomplished employing an RCM reaction as the key step. The requisite starting material 2-methoxy-5-methylphenyl acetate was obtained from p-cresol. Two sequential allylation reactions followed by RCM reaction transformed 2-methoxy-5-methylphenyl acetate into 1 -arylcyclopent-3-en-l-carboxylate. Allylic oxidation and alkylation followed by functional group manipulation transformed I-arylcyclopent-3-en-l-carboxylate into (±)-U3-herbertenediol.
For the enantiospecific synthesis of (+)-a-herbertenol, an aromatic Claisen rearrangement based strategy was developed starting from the readily available monoterpene (R)-limonene. To begin with, limonene was converted into 5-isopropenyl-2-methylcyclopent-l-enemethanol which on Mitsunobu reaction with p-cresol followed by Claisen rearrangement of the resultant aryl ether generated a mixture of3-isopropenyl-3a,7,8b-trimethyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofurans. Degradation of the isopropenyl group and cleavage of the central ether ring transformed the major cyclopentabenzofuran into 3-aryl-2,3-dimethylcyclopentanone, which was further elaborated into (+)-a-herbertenol.
The general RCM reaction methodology developed for the herbertenoids has been further extended to the first total synthesis of the antimicrobial sesquiterpenes (±)~ enokipodins A andB, and a formal total syntheses of (±)-cuparene-l,4-diol, (±)-cuparene-lt4-quinone and (±)~HM-1 methyl ether star*w« from 2,5~dimethoxy~4-methylacetophenone. It has been further extended to the formal synthesis of spirocydic sesquiterpenes (±)-acorone and (±)-isoacorones starting from cyclohexane-1,4-dione.
|
10 |
Ireland-Claisen Rearrangement Based Strategy To Sesquiterpenes Containing Vicinal Quaternary Carbon AtomsVasanthalakshmi, B 03 1900 (has links)
Among Nature's creation, terpenoids are more versatile and exciting natural products. In a remarkable display of synthetic ingenuity and creativity, nature has endowed terpenes with a bewildering array of carbocyclic frameworks with unusual assemblage of rings and functionalities. This phenomenal structural diversity of terpenes makes them ideal targets for developing and testing new synthetic strategies for efficient articulation of carbocyclic frameworks. The thesis entitled “Ireland-Claisen Rearrangement Based Strategy to Sesquiterpenes Containing Vicinal Quaternary Carbon Atoms” demonstrates the utility of the Ireland ester Claisen rearrangement and RCM reactions for the synthesis of a variety of sesquiterpenes containing vicinal quaternary carbon atoms. The results are described in five different sections, viz., (a) Synthesis of herbertene-1,13-diol and α-herbertenol; (b) Total syntheses of herbertenolide, herberteneacetal, herbertene-1,14-diol and herbertene-1,15-diol;
(c) First total synthesis of the spirobenzofuran isolated from Acremonium sp. HKI 0230; (d) Total synthesis of lagopodin A; and (e) Synthesis of Laurencenone C, α- and β-chamigrenes. Complete details of the experimental procedures and the spectroscopic data were provided in a different section. A brief introduction is provided wherever appropriate to keep the present work in proper perspective. The compounds are sequentially numbered (bold), references are marked sequentially as superscripts and listed in the last section of the thesis. All the spectra included in the thesis were obtained by xeroxing the original NMR spectra.
To begin with a short and efficient synthesis of herbertene-1,13-diol and α-herbertenol has been achieved starting from 2-allyl-4-methylanisole. Ireland ester Claisen rearrangement of the dimethylallyl 2-arylpent-4-enoate, obtained from p-cresol in seven steps, followed by RCM reaction of the resultant diene generated 1-aryl-1,2,2-trimethylcyclopent-3-enecarbo-xylate, which on functional group transformations provided (±)-herbertene-1,13-diol and (±)-α-herbertenol.
Ireland ester Claisen rearrangement of E-3-(2-methoxy-5-methylphenyl)but-2-en-1-yl 2-methylpent-4-enoate furnished a stereoisomeric mixture of the dieneesters, which on RCM reaction generated an epimeric mixture of 2-aryl-1,2-dimethylcyclopent-3-enecarboxylates. These esters were further elaborated into (±)-herbertene-1,14-diol, (±)-herbertene-1,15-diol and (±)-herberteneacetal via epi-herbertenolide and (±)-herbertenolide.
First total synthesis of a spirobenzofuran isolated from Acremonium sp. HKI 0230 has been accomplished starting from 2,5-dimethoxy-4-methylphenylacetate, confirming the structure of the natural product. Ireland ester Claisen rearrangement of dimethylallyl 2-(2,5-dimethoxy-4-methylphenyl)pent-4-enoate followed by RCM reaction and demethylation furnished a lactone, cyclopentaspirobenzofuranone, which on further functional group transformations completed the first total synthesis of the spirobenzofuran.
1-(2,5-Dimethoxy-4-methylphenyl)-1,2-dimethylcyclopent-3-enecarboxylate, an intermediate in the synthesis of spirobenzofuran, has been further elaborated into 1-aryl-1,2,2-trimethylcyclopent-3-ene, which on functional group transformations transformed into (±)lagopodin A and (±)-enokipodins A and B.
Efficient total syntheses of laurencenone C, α-chamigrene and β-chamigrenes have been accomplished employing an Ireland ester Claisen rearrangement and RCM reaction as key steps starting from the Diels-Alder adduct of isoprene and acrylic acid. Ireland ester Claisen rearrangement of dimethylallyl cyclohex-3-enecarboxylate generated methyl 1-(1',1'-dimethylallyl)cyclohex-3-enecarboxylate, which was further elaborated into 5,5,9-trimethyl-spiro[5.5]undeca-3,8-dien-1-ol employing an RCM reaction as the key step. The spirodienol on further functional group transformations generated (±)-laurencenone C, (±)-α-chamigrene and (±)-β-chamigrene.
|
Page generated in 0.0649 seconds