• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fluxes of Pb-210 and Mass¡GComparisons Between the Settling Particulates and Sediments in the Northern South China Sea

Wu, Cheng-chen 15 September 2006 (has links)
This study has analyzed Pb-210 activity in cores taken from northern coastal South China Sea (SCS) and the area west of the Luzon Strait (LS) in order to estimate the sedimentation rates and the mass accumulate rates which allow a direct comparison with measured settling particulate fluxes. Also, the particulate and dissolved Po-210 and Pb-210 distributions in a water column located to the west of the LS were measured and compared with earlier data. Core samples were collected at Stations G and H (box cores) during the ORI-688 cruise (July, 2003) and at M1, F and 1 (box cores) during the ORI-722 cruise (June and July, 2004). The water column samples were collected at S7 during the ORI-763 curise (August, 2005). Stations H, G and 1 are located in the continental shelf of the northern SCS; Stations, M1, F and S7 are located in the deep water area west of the LS. The water content of the cores at F and M1 west of the LS is mostly around 40%~55%, while that of the cores at H, G and 1 in the coastal area of the northern SCS ranges about 25%~37%. The total organic matter as estimated from the total loss on ignition at F and M1 is, respectively, about 6% and 12% on the average. The coastal cores contain about 3%~8% total organic matter. The Pb-210 activity generally decreases with the core depth but reaches a constant at a certain depth, below which the excess Pb-210 vanishes in the core. Based on the excess Pb-210 distributions in the cores, the estimated sedimentation rates vary between 16 and 52cm/100yr. At M1 station, the mean Pb-210 flux and the mean mass flux are, respectively, 129 dpm/m2/d and 0.55 g/m2/d as determined from the deepest sediment trap(2848m) (Chung et al., 2004). These values are much smaller than what were estimated from the cores: the Pb-210 flux at 201 dpm/m2/d and the mass flux at 5.3 g/m2/d. The Pb-210 flux obtained from the trap is 65% of that measured from the core, and the mass flux from the trap is only 10% of that from the core. These large differences may arise from an over estimation of the sedimentation rate in the core (due to bioturbation) and near-bottom lateral transport of sediments from elsewhere. Compared to the basin west of the LS, the mass flux at the coastal area is much higher but the Pb-210 flux is much lower, probably due to the fact that shallow water has little amount of Pb-210 to be scavenged and no boundary scavenging effect has been observed. The Pb-210 specific activity at S7 station ranges from 155 to 900 dpm/g; the Po-210 activity at this station ranges from 78 to 507dpm/g. The particulate Po/Pb ratio is about unity at 1800m depth, but the ratio at all other depths is less than unity, indicating that the Po-210 is deficient relative to Pb-210 in particles at this station. The total (dissolved + particulate) Po/Pb ratio in the water column is generally less than unity, showing Po-210 deficiency relative to Pb-210 probably due to absorption and/or adsorption of Po-210 by plankton and other organisms. The Po/Pb ratio for the water column averages about 0.6, corresponding to a mean residence time of 0.83yr for Po-210 removal.
2

Settling Particulates and Sediments in the Northern South China Sea: Study of Flux and Pb-210

Huang, Huei-chung 31 July 2007 (has links)
In this study, the sediment cores taken in the northern South China Sea (SCS) as well as the settling particulates collected from time-series sediment traps deployed in the same area have been analyzed for Pb-210 activities in order to estimate the sedimentation rate and mass flux from core data and to obtain temporal variations in mass flux and Pb-210 from the time-series sediment traps. The main purposes are to compare and to discuss the mass balance problem between the sediment trap and core results in terms of mass flux, Pb-210 activity and its fluxes. The time-averaged particulate fluxes measured from different depths at M3S and M1T sites in the northern SCS generally increase with depth, reflecting an increasing effect of the lateral transport. The upper and middle traps display a synchronous trend in mass flux variations. The mean particulate flux at S5 site near Luzon Strait is clearly higher than the two sites mentioned above probably because of the effect of topography and bottom current. Distributions of Pb-210 are influenced by particulate scavenging: the longer the settling particles stay in the water column the more the surrounding Pb-210 will be scavenged. The temporal variations of Pb-210 at M3S show a similar trend and an increase with depth. At M1T site, the temporal variations of Pb-210 show no clear trend due to insufficient samples. It has been commonly observed in the marginal sea that Pb-210 activity is inversely correlated with the associated mass flux, i.e. higher Pb-210 is associated with lower mass flux in terms of their temporal variations. This study is also in line with such observations. The mean water content of the core at I located near the shelf break in the northern SCS is about 28%, and its mean loss on ignition (L.O.I.) is 3.2%. These are similar to those observed previously in the northern SCS (water content: 25-37%; L.O.I.: 3%-8%). The sedimentation rate as determined from the excess Pb-210 profile at core I is 18cm/100yr which is at the lower end of the previous study (16-52 cm/100yr) (Wu, 2006). The sediment flux and sedimentation rate estimated from both the Pb-210 inventory (I) and the upper limit of sedimentation rate are identical, respectively, at 0.32 g/cm2/yr and 18cm/100yr. Thus the mixing effect could be neglected. The Pb-210 flux estimated from the deep sediment trap at 2163m (M3S, 77.4 dpm/m2/d) is much lower than that observed from the core sediment (F, 761.1 dpm/m2/d). Although the specific Pb-210 activity of the particles is much greater than that in the surface sediment, the particle flux is too small relative to the mass flux of the sediment, suggesting that additional sediment with Pb-210 has been transported laterally from elsewhere and deposited here. This results in a large imbalance between the sinking particulates and the underlying sediment in mass flux and Pb-210 flux.
3

The relationship between hydrological and nutrient conditions in the Dongsha Atoll

Shen, Yi-jie 02 November 2012 (has links)
This study focuses on the relationship between hydrological and nutrient conditions in seawater surrounded by Dongsha Atoll. Dongsha Atoll is located in the northern South China Sea (NSCS), the water properties should be in coherence with the NSCS water masses. However, due to the semi-enclosed topography the water inside Dongsha Atoll is largely affected by local insolation and rainfall. Significant relationships between SiO2 or PO43- and salinity indicate that rainfall could be a major source of these nutrients. Insignificant relationship between N+N and salinity indicates that rainfall and nitrogen fixation both might affect the distribution of N+N. Temporal variations of temperature and chlorophyll a were alike, except for which occurred in July, 2011. It was probably caused by photo inhibition on phytoplankton growth. The inventory of chlorophyll a was positively correlated with both N+N and SiO2 but not with of PO43-, indicating that phytoplankton growth in Dongsha Atoll was mainly affected by N+N and SiO2. Phytoplankton growth maybe limited by N+N but not by SiO2, as the concentration of SiO2 was mostly beyond the limitation concentration for phytoplankton. According to close relationships between chlorophyll a and TSM, POC and PN, the particulate matter maybe mainly derived from biological origins. The inventory of chlorophyll a was positively correlated with both dissolved organic carbon (DOC) and dissolved organic nitrogen (DON), manifesting the importance of biological origins for DOC and DON concentration. The ratios of DOC/DON, DON/DOP and DOC/DOP within the atoll were in ranges of 7.34-303 (mean: 30.4), 3.00-142 (mean: 22.7) and 104-2546 (mean: 421), respectively. The ratios are higher than those values in NSCS and East China Sea, implying the excretion of carbon-enriched DOM by phytoplankton. The concentration of chlorophyll a, DOC and POC were higher in the Small Lagoon than in the Atoll Lagoon, implying a relatively high productivity in the Small Lagoon. The fluxes of carbonate in the atoll was more than 30 times of the flux in the NSCS, due to its unique characteristics in the coral reef habitat. The organic matter of settling particulates was mainly derived from biological sources. The metal of enrichment factor of settling particulates reveals that Fe and Al are mainly derived from crustal sources, while Cu, Zn and Pb are likely influenced by anthropogenic sources.
4

Settling Particulates and Sediments in the Northern South China Sea: Distributions of Mass Flux and Pb-210

Chang, Hui-Chen 06 September 2002 (has links)
This study reports the first sediment trap mooring results obtained under the SIBEX program (South China Sea Integrated Biogeochemical Experiments). Two strings of sediment traps were deployed respectively at M1 located to the southwest of Taiwan, and M2 in the northern basin of the South China Sea (SCS). Box cores were also taken at several sites to the south of M2. The main purposes are to measure settling particulate fluxes at various depths for the studies of temporal and spatial variations of the particulate flux and 210Pb activity. The box cores were used to determine the sedimentation rates. These are to enhance our understanding of the characteristics of the particulate distribution and the roles the particulate matter plays in the biogeochemical processes in the SCS. Particulate fluxes measured from different depths at M1 and M2 generally increase with depth. In temporal variation, M1 has higher amplitudes than M2, with highest amplitudes at 948 m where highest flux (2025 mg/m2/d) was observed. The particulate flux at 948 m has higher values than at 248 m, probably due to lateral transport. At M2, the particulate flux at 240 m has higher values with greater amplitudes than at greater depths, i.e. 1240 m, 2240 m and 3240 m, where their particulate fluxes show a synchronous trend with small amplitudes in temporal variation. The time-averaged particulate flux for each trap ranges from 199 to 554 mg/m2/d, consistently higher than previous observations (76~104 mg/m2/d). However, our values are comparable to the mean particulate flux (280 mg/m2/d) estimated from terrigenous inputs. The apparent changes in particulate flux in the SCS over the past ten years warrants further investigations. The temporal variations of Pb-210 show a synchronous trend and a rapid increase with depth as observed at M1 and M2. This rapid increase of Pb-210 with depth reflects effective scavenging by sinking particulates although particulate concentrations are low. The loss on ignition (L.O.I.) at M1 and M2 was inversely correlated with Pb-210, indicating that Pb-210 was expelled from biogenic particulates or organic matter. The particulate fluxes around 240 m at M1 and M2 were generally positively correlated with the L.O.I., suggesting that the high particulate fluxes are probably contributed by biogenic particulates or organic matter. The sedimentation rates as determined from excess Pb-210 profiles range from 9.01~23.13 cm/100yr. These rapid sedimentation rates reflect the effect of mixing and additional sediments accumulated through lateral transport. The surface layers of these cores were subject to perturbation and mixing, based on the penetration depths of the excess Pb-210. The Pb-210 flux estimated from the inventory of excess Pb-210 in the sediments is much greater than that observed from the traps, suggesting that additional Pb-210 has been accumulated via lateral transport and slumping of nearby surface sediments. Based on the mean particulate flux observed, one may roughly estimate the corresponding sedimentation rate of about 10 cm/ka, which is an order of magnitude lower than those determined by the excess Pb-210 method. Because the upper layers of the sediments have been strongly disturbed and mixed with the additional sediments accumulated through lateral transport, the sedimentation rates as determined by the excess Pb-210 method are probably over-estimated by a factor of 10 to 20.

Page generated in 0.0796 seconds