Spelling suggestions: "subject:"settore ING-IND/06 - fluidodinamica"" "subject:"settore ING-IND/06 - fluidodinâmica""
1 |
Water self-ejection, frosting, harvesting and viruses viability on surfaces: modelling and fabricationDi Novo, Nicolò Giuseppe 24 October 2022 (has links)
The wettability and phase change phenomena of water are ubiquitous on biological and artificial surfaces. Properties like water repellency, self-cleaning, coalescence induced condensation jumping, anti-frosting, and dew harvesting arise on surfaces with particular structures and chemistry and are of particular interest for energy and water saving.
This thesis collects different studies of wettability and phase change on natural and artificial surfaces: growth and self-ejection of condensation droplets on micro and nanostructured surfaces we fabricated, their applications, the Sliding on Frost of condensation droplets observed on the Cotinus Coggygria leaf, the dew harvesting property of the Old Man of the Andes Cactus enhanced by distance coalescence through microgrooves and finally, a theoretical study of viruses viability in sessile droplets.
The first chapter introduces the theoretical framework of wettability and phase changes on surfaces.
In the second chapter, we present the self-ejection of condensation droplets from hydrophobic nanostructured microstructures. We modelled analytically the droplets jumping and fabricated surfaces to verify the predictions. The fabricated geometry was inspired by the modelling and the available fabrication techniques. We tested the surfaces in condensation conditions. Using a high frame rate camera coupled with a long working distance microscopy objective, we investigated the growth and ejection transient. We then compared the experimental self-ejection velocity for various structures geometry with our analytical models.
In Chapter 3, we investigated the applications of the fabricated surfaces reported in Chapter 2.
In Chapter 4, we explore the condensation frosting on the leaf of Cotinus Coggygria, native of our woods and with interesting hydrophobic properties. Covered by wax nanotubules, it exhibits coalescence-induced condensation jumpings that may be a useful cleaning tool. Furthermore, the frost is delayed but not only for the jumping. Surprisingly, at temperatures some degrees below zero, we observed what we called ‘droplet Sliding on Frost bridges’, that further delays frosting. We described the feasibility of this sliding in terms of dynamic contact angles of the surface and contact angles of supercooled water on ice. By capturing high temporal and spatial resolution videos we investigated the sliding on frost and droplet recalescence (fast dendrite growth that partially solidify the liquid). The responsible for the failure of sliding for temperatures from about -8 ° C down appears to be the advancing angle of water on ice that increases with the subcooling rather than the recalescence that blocks the drop in place. These results add a piece to the fundamental research on the supercooled water-ice-vapour interfaces.
As it often happens, biological surfaces offer a starting point for the study of fundamental mechanisms and the development of artificial surfaces with optimized properties. In the Chapter 5, the multifunctional roles of hairs and spines in Old Man of the Andes Cactus (Oreocereus trolli) are studied. We study the morphology of the appendages, the hairs wettability, mechanical properties of both, and the dew formation on spines. The longitudinal microgrooves on the spines cause a particular phenomenon of distant coalescence (DC), in which smaller droplets flow totally or partially into larger ones through the microgrooves, with consequent accumulation of water in a few large drops. An earlier study has shown artificial micro-grooved surfaces that exhibit DC are more efficient than flat ones at collecting and sliding dew, and thus these cactus spines could act as soil dew conveyors. The agreement between our analytical model and experimental data verifies that the flow is driven by the Laplace pressure difference between the drops. This allowed us to obtain a general criterion for predicting the total or partial emptying of the smaller drops as a function of the dynamic contact angles of a surface. Based on this criterion, an hydrophilic material with small contact angle hysteresis would allow a greater number of complete drops emptying.
The COVID-19 pandemic has raised the problem of contagion from airborne and deposited droplets. In the last chapter, we report the state of the art of experiments on the viability of viruses in deposited droplets. Up to date, it has been experimentally highlighted that the relative viability of some viruses (RV) depends on the material chemistry, temperature, and interestingly, on relative humidity (RH) with a U-shaped trend. One of the current hypotheses is that the cumulative dose of salt concentration (CD) affects RV. We model the RV of viruses in sessile droplets by inserting a RV-CD relation in a model of droplet evaporation. By considering a saline water droplet (one salt) as the simplest approximation of real solutions, we analytically simulate the time evolution of salt concentration, vapor pressure, and droplet volume varying contact angles, droplet sizes, and RH in the range 0–100%. The results elucidate some previously not yet well-understood dynamics, demonstrating how three main regimes—directly implicated in nontrivial experimental trends of virus RV—can be recognized as the function of RH. The proposed approach could suggest a chart of a virus fate by predicting its survival time at a given temperature as a function of RH and contact angle. We found a good agreement with experimental data for various enveloped viruses and predicted in particular for the Phi6 virus, a surrogate of coronavirus, the characteristic U-shaped dependence of RV on RH. Given the generality of the model, once experimental data are available that link the vulnerability of a certain virus (such as SARS-CoV-2) to the concentrations of salts or other substances in terms of CD, it is envisioned that this approach could be employed for antivirus strategies and protocols for the prediction/reduction of human health risks associated with SARS-CoV-2 and other viruses.
|
Page generated in 0.0607 seconds