Spelling suggestions: "subject:"sewage -- purification"" "subject:"sewage -- urification""
41 |
Development of a prototypical design process for the use of a microbialBengtson, Carl Woodland. January 1986 (has links)
Call number: LD2668 .T4 1986 B46 / Master of Landscape Architecture / Landscape Architecture/Regional and Community Planning
|
42 |
A membrane bioreactor(MBR) for an innovative biological nitrogen removal processChen, Wen, 陳雯 January 2007 (has links)
published_or_final_version / abstract / Civil Engineering / Master / Master of Philosophy
|
43 |
Elucidation of microbiological-biochemical relationships in denitrification occurring during activated sludge treatmentDrysdale, Gavin David January 2001 (has links)
Dissertation submitted in compliance with the requirements for the Master's Degree in Technology: Biotechnology, Technikon Natal, 2001. / Up until now extensive work has been done to develop kinetic models and related software that can
be used successfully to simulate and design nitrification denitrification (ND) and nitrification
denitrification biological excess phosphorus removal (NDBEPR) systems for efficient nitrogen
removal. The denitrification kinetics of these systems have primarily been determined and attributed
to the ordinary heterotrophic bacteria, now also known as the OHO fraction, otherwise not involved
in biological excess phosphorus removal. However, denitrification kinetics determined for ND
systems have been found to vary considerably at times when applied to NDBEPR systems because
of varying OHO active fraction estimates and the unexplained occurrence of anoxic phosphorus
removal and anysuccess achieved to date has been some what fortuitous. Ultimately variations in
process performance and kinetics are attributable to inadequate control and lack of understanding
of the ecological, physiological and biochemical activities of constituent microorganisms. There is
growing concern and movement towards a better understanding of the microbial community within
activated sludge in order to gain optimal control of the process. / M
|
44 |
Microbial abilities to detoxify chromate by reductionMaistry, Neroshini January 2001 (has links)
Dissertations submitted in compliance with the requirements for the Master's Degree in technology: Biotechnology, Technikon Natal, 2001. / Hexavalent chromium [Cr(VI)] or chromate, is a toxic, water-soluble contaminant present in many soils and industrial eflluents. As a result of contaminated discharges from industrial applications, and inappropriate wastedisposal practices, significant amounts of chromate have found their way into the environment. This poses a health risk to man as well as animals and plants due to the carcinogenicity, mutagenicity, and teratogenicity of chromate. In man, acute, high level exposures to Cr(VI) can result in ulceration of the skin, eyes, and mucous membranes. Exposure of plants to Cr(VI) can result in reduced biomass production, and in extreme cases, death. Upon reduction ofCr(VI) to trivalent chromium [Cr(III], the toxic effects are significantly decreased because of a decrease in the solubility and bioavailability of Cr(III). Traditionally, Cr(VI) has been recovered from aqueous systems using processes exploiting the differential solubility properties described above. The use of chromate reducing bacteria represents a potential mechanism for the development of an efficacious, cost effective alternative to traditional chemical/physical processes for Cr(VI) recovery from the environment. Therefore, the aim of this research was to isolate and identify chromate reducing bacteria from soil, and characterise the chromate reductase enzyme in order to determine the potential of bacteria to detoxify chromate by reduction. Bacteria from soils and wastewater were examined for chromate reducing potential and identified on the basis of biochemical tests and API 20E. Organisms were isolated by the spread plate technique. Species of Pseudomonas maltophilia, Bacillus subtilis, Acinetobacter calcoaceticus, and Cellumonas cellasea were capable of catalyzing the reduction ofCr(VI) to Cr(IlI) in batch experiments. Reduction capability as high as 99% by the isolates was detected from an initial Cr(VI) concentration of 150 mg.L' in batch cultures. Chromate reduction was determined by means of the diphenylcarbazide method and total chromium was measured by atomic absorption spectroscopy. Pseudomonas maltophilia was observed to be the most suited organism for the efficient detoxification ofCr(VI) due to its wide temperature and pH requirements, low substrate utilization, and tolerance to heavy metal ions of'Cu', Cd2+,Zn2+,and Ni2+which commonly appear in industrial eflluents along with Cr(VI). Reduction rate in a batch reactor for this organism was calculated to be 1.75 mg.g+h'. Comparison of the rates of chromate reduction by Cr(VI) grown cells and cells grown without chromate indicated that the chromate reductase activity is constitutive. Reductase activity was detected by means of the lysozyme-EDTA method in aerobically grown cells, with highest specific activity in the cytoplasmic fraction of the cell. The Cr(VI)-reductase was found to be NAD(p)H-dependent and yielded an activity of 3.24 ml.I.mg' of protein in the cytoplasmic fraction. Once optimization of the parameters in the batch reactor was achieved, cells of Ps. maltophilia was immobilized into polyacrylamide gel and packed in a column. Mass balance studies indicated that ca 147 mg.L' chromate passing through the column undergoes reduction with an initial Cr(VI) concentration of 150 mg.L' resulting in a Cr(VI) reduction efficiency of98%. An amount of 0.11 mg.L' remained in the cells, 0.11 mg.L' in the cell wash water, and 1.65 mg.L' was unaccounted for in the mass balance. Chromate reduction rate in the continuous-upflow reactor system was calculated to be 5.34 mg.g'l.h', which was 3-fold higher than that calculated for the batch reactor. Chromium-contaminated industrial eflluent obtained from Sheffield, Natal, and Saayman Danks Electroplaters was pumped into the continuous-upflow reactor containing immobilized cells of Ps. maltophilia to determine the industrial applicability of the reactor to treat chromate-containing effluents. Complete Cr(VI) reduction / M
|
45 |
Effects of heavy metals on microbial removal of inorganic nitrogen and phosphorus from secondarily treated sewage effluent.January 1989 (has links)
by Lydia Chang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1989. / Bibliography: leaves 154-165.
|
46 |
Development of a model of the contact stabilization processJatko, Joyce Ann January 2010 (has links)
Typescript, etc. / Digitized by Kansas Correctional Industries
|
47 |
Tolerance limits of selected protozoan and bacterial isolates to vanadium and nickel in wastewater systemsKamika, Ilunga January 2013 (has links)
D. Tech. Environmental, Water and Earth Sciences / Pollution of water sources with heavy metals is currently a global concern due to the detrimental effect of these metals on both human and animal health. To address this issue, biological treatment methods have been seen as the most effective and eco-friendly option of the available treatment processes of wastewater. The aim of this study was to compare the ability of selected bacterial isolates and indigenous protozoan to tolerate nickel and vanadium in wastewater systems in order to determine which group of organisms might play a major role in the removal of nickel and vanadium, even at high concentrations, in wastewater treatment systems.
|
48 |
Deritrification in the activated sludge process with controlled anoxicconditions in the aeration tank黃金華, Wong, Kam-wah. January 1987 (has links)
published_or_final_version / Civil Engineering / Master / Master of Philosophy
|
49 |
Biological excess phosphorus removal under high rate operating conditions in a suspended growth treatment processCasher, Thomas Christopher January 1990 (has links)
The primary objective of this research was to determine if efficient biological phosphorus removal could be established under low sludge retention time of 2 days and a nominal hydraulic retention time of 4 to 6 hours. The two-stage Phoredox process was selected because of the practical application of retrofitting high rate treatment plants to achieve bio-P removal without the additional tankage required for an anoxic section and the additional expense of a recycle system.
It has been shown that nitrate recycled into the anaerobic reactor impacts on bio-P removal and the two-stage Phoredox process provides no control over nitrates entering the anaerobic reactor. Therefore a secondary objective of this research was to determine if a low sludge retention time mode of operation could be used as an effective way to prevent nitrification in the activated sludge treatment process.
Another objective was to observe mixed liquor settling characteristics of the two-stage Phoredox process operated under high rate conditions.
A pilot scale two-stage Phoredox activated sludge treatment process operating under high rate conditions was used to meet these objectives. The desired bio-P removal biomass was not observed under SRT operating conditions of 2, 3 and 5 days. Partway into the research a sludge bulking condition developed which was identified as filamentous
growth. On two occasions this severe filamentous growth resulted in the process failing and the system being restarted.
On one occasion after the system was restarted using a seed sludge from a three-stage Phoredox pilot plant, a bio-P removal biomass was present. This condition only lasted for a short period and ended as filamentous growth began to become dominant. The process failed because of this phenomenon.
The system was restarted using a seed sludge and again filamentous growth dominated. Chlorine addition was found to be the only method to control this phenomenon and was continued to the end of the research. The desired bio-P removal biomass was not observed even during the last period of the research when the SRT was increased to 8 days.
During this research a stable bio-P removal biomass was not established. For a short period a bio-P removal biomass was present but failed to persist. Nitrification never became established at any time. Sludge settleability was poor due to filamentous growth which developed partway into the research and was present throughout the remainder of the study. Chlorine addition was the only method found that remedied this settling problem. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate
|
50 |
The affect of anaerobic volume reduction on the University of Cape Town (UCT) biological phosphorus removal processLee, N. P. (Nelson Paul) January 1990 (has links)
The objective of this research was to optimize the bio-P process as applied to a weak sewage with respect to HRT in each of the process zones. This goal was to be achieved by changing the HRT of the various zones with all other operating characteristics being held constant.
The experimental work during this study involved two initially identical process trains operated in the University of Cape Town (UCT) mode. The aerobic zones of both trains were divided into four equal sized complete-mix cells to allow observations of phosphate uptake and poly-β-hydroxyalkanoate (PHA) consumption under aerobic conditions. After steady-state was established, the anaerobic HRT was reduced to 50% of the original value in the experimental module by reducing the anaerobic reactor volume. At the same time, the mixed liquor of both trains was drained, mixed and reapportioned to the two processes, thereby assuring equivalent starting conditions.
Results of this study showed that both processes performed identically prior to the anaerobic HRT change. After the anaerobic HRT change, there was a forty day period where P removal and effluent P were the same in both process trains. This was so, even though the anaerobic P release was considerably less in the experimental module. Subsequently, a change in influent sewage type corresponded to a change in P removal and effluent P in the two process trains. An examination of the process parameters showed that the anoxic zone of the experimental module, after the anaerobic HRT change and the sewage change, consistently removed less P or released more P than
in the control module. As a result, the control module out-performed the experimental module. Batch tests and tests to better characterize the influent sewage were then conducted in an attempt to determine the reasons for the different P removal characteristics.
Under the test conditions, it appeared that the original anaerobic HRT was excessive. This was preferable to an insufficient anaerobic HRT, such as in the experimental module, however. The anoxic zone may have been too large, too small or just right for optimum P removal depending on the influent sewage characteristics. Optimizing the bio-P process by reducing the aerobic zone HRT appeared to have the greatest potential. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate
|
Page generated in 0.1152 seconds