Spelling suggestions: "subject:"sewage -- south africa"" "subject:"sewage -- south affrica""
1 |
A study into the interaction of gold nanoparticles released into drinking water and wastewater systemRaedani, Shumani Alfred January 2016 (has links)
MESHWR / Department of Hydrology and Water Resources / This research involves the investigation of the interaction of different sized Nano Gold particles released into municipal drinking water and municipal waste water. Waste water was collected from Malamulele waste water treatment plant and the municipal water was collected at Mintek in Johannesburg, Randburg, South Africa. The waste water was analysed using ICP-MS to detect the metals and anions in it. The results showed the abundance of Sulphur (464 ppm), Calcium (28 ppm), Chloride (27.8 ppm), Iron (20 ppm), Magnesium (8.2 ppm), silicon (6.192 ppm) in descending order and other trace elements, including gold, that were immeasurable (<0.1). The simulated situation was created by adding 20nm gold and 40nm gold nanoparticles into municipal drinking water and waste water and kept at different environmental conditions (light, light and agitation, dark, dark and agitation) under aerobic and anaerobic conditions over a period of two months. Physico-chemical properties (pH and chemical oxygen demand) of the solutions were checked once in a month. The pH fluctuated between the acceptable ranges (5.5 – 9.5) for the two month period. Both municipal water and waste water, with and without gold nanoparticles, under aerobic condition showed an increase in chemical oxygen demand. The gold content in waste water under anaerobic condition showed an increase while under aerobic condition the decline in gold content was evident. The zeta potential of gold nanoparticles in waste water in light and agitation showed (-30 mV) while waste water on other environmental condition (light, dark and dark with agitation) presenting unstable (-18 mV) charge, but the charge shifted positively on the second month rendering them also unstable. Dynamic light scattering and TEM were used to check any possible aggregation or agglomeration of nanoparticles in the waste water. There were some few discrepancies where TEM and DLS contradict, but overall there was no significant probability of any aggregation of gold nanoparticles. The EDX was used to confirm the presence of Au0 in the waste water (with added gold nanoparticles). The research did show that the gold nanoparticles would exist as Au0 in the waste water and thus the discharge of Au-NPs to the sewer system is not recommended, but rather recycle them.
|
2 |
Analysis of Heavy Metals and Persistent Organic Pollutants in Sewage Sludge from Thohoyandou Wastewater Treatment Plant and transfer to Vegetables.Akinsaya, Nurudeen Akinwale 18 May 2018 (has links)
MENVSC / Department of Hydrology and Water Resources / Sewage sludge (biosolids) from wastewater treatment plants (WWTPs) has been widely used
as a soil improver in Europe, United States of America and some developing countries
including South Africa. It has its benefits for farmers as a good source of organic matter and
minerals, however, sludge after treatment still contains pathogenic organisms, heavy metals
and persistent organic pollutants (POPs). The POP and heavy metal contaminants that
accumulate in sludge may transfer through the food chain and cause adverse effects on
human beings.
In this study, a field experiment was carried out on farmland fertilized with sewage sludge
from a wastewater treatment plant (WWTP) that vasically receives domestic wastewater and
storm water. Vegetable spinach (Spinacia oleracea) was used for this study and was planted
on a farmland under controlled conditions. Ten ridges each of dimensions 20 m × 0.3 m was
made and dry sludge weights of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 kg were applied as
manure on each of the ridges, respectively.
Representative samples of sludge and soil were taken for analysis of heavy metals and POPs.
At maturity, in twelve weeks, the root and leave samples of the vegetable were taken from all
the ridges including the control. The soil, sludge, and vegetable samples were analyzed for
total heavy metal content (Cd, Cr, Cu, Ni, Pb, Co, Zn, Al, Fe, Mn), speciated heavy metal
content and POP (PAH, PCB). Soil and sludge samples were also analyzed for total organic
content, pH, cation exchange capacity (CEC), conductivity and alkalinity. The analysis for
total heavy metals and speciated heavy metal content was carried out using inductively
coupled plasma optical emission spectrophotometer (ICP-OES), and CEC analysis was
carried out using atomic absorption spectrophotometer (AAS). A two-dimensional gas
chromatograph with time of flight mass spectrometry detector (GC X GC TOFMS) was used
for POP measurements. pH measurement was made using a pH meter and conductivity
measurement using a conductivity meter. Alkalinity and total organic content analysis was
performed using titrimetric apparatus. The highest total heavy metal concentration of 378.9
mg / kg was recorded in Fe metal in soil and Leaf sample while the lowest total metal
concentration of 0.0003 mg / kg was in Cu metal in root sample. The highest heavy metal
concentration of 1002 mg / kg in speciated forms was in Mn metal in F1 fraction and the
lowest of 0.0004 mg / kg was in Cd metal in F5 fraction. PAHs were only found in soil
samples and their concentrations ranged from 2.53 mg / kg to 146.5 mg / kg. There were no
PCB detected in all the samples analysed. The results indicated that the trace metals
concentrations found in the exchangeable fraction were higher than those observed in any of
the preceding extractions except in the case of Cd, Cr, Fe and Pb where Fe-Mn oxide and
organic matter fractions predominated and were closely followed by exchangeable fraction.
|
Page generated in 0.044 seconds