• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 59
  • 59
  • 59
  • 22
  • 19
  • 18
  • 16
  • 12
  • 11
  • 10
  • 9
  • 9
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A study of the effect of cyanide case hardening, copper and zinc plating wastes on specified groups of bacteria occuring in anaerobic sewage-sludge digestion a thesis in public health laboratory practice submitted in partial fulfillment ... Master of Public Health ... /

Sherron, Corrina M. January 1944 (has links)
Thesis (M.P.H.)--University of Michigan, 1944. / Cover title: The effect of certain industrial wastes on anaerobic decomposition.
42

Effect of salinity on biodegradation of MSW in bioreactor landfills /

Al-Kaabi, Salem. January 1900 (has links)
Thesis (Ph.D.) - Carleton University, 2007. / Includes bibliographical references (p. 248-258). Also available in electronic format on the Internet.
43

Biological and physical treatment of crab processing industry wastewaters /

Wolfe, Christopher L., January 1993 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1993. / Vita. Abstract. Includes bibliographical references (leaves 94-98). Also available via the Internet.
44

Optimization of anaerobic co-digestion of sewage sludge using bio-chemical substrates

Madondo, Nhlanganiso Ivan January 2018 (has links)
Submitted in fulfillment of the requirements of the degree of Masters of Engineering: Chemical Engineering, Durban University of Technology, Durban, South Africa, 2018. / The anaerobic process is increasingly becoming a subject for many as it reduces greenhouse gas emissions and recovers carbon dioxide energy as methane. Even though these benefits are attainable, proper control and design of the process variables has to be done in order to optimize the system productivity and improve stability. The aim of this research was to optimize methane and biogas yields on the anaerobic co-digestion of sewage sludge using bio-chemical substrates as co-substrates. The first objective was to find the bio-chemical substrate that will generate the highest biogas and methane yields. The anaerobic digestion of these substrates was operated using 6 L digesters at 37.5℃. The substrate which generated the highest biogas and methane yield in the first batch experiment was then used for the second batch test. The objective was to optimize the anaerobic conditions (substrate to inoculum ratio, co-substrate concentration and temperature) in-order to optimize the biogas and methane yields. The second batch test was achieved using the conventional One-Factor-At-A-Time (OFAT) and the Design of Experiment (DOE) methods. Final analysis showed that the bio-chemical substrates could be substrates of interest to biogas generators. Amongst the substrates tested in the first batch experiment glycerol (Oleo-Chemical Product waste) generated the highest methane and biogas yields of 0.71 and 0.93 L. (g volatile solids added)-1, respectively. It was believed that glycerol contains significant amount of other organic substances such as lipids that have higher energy content than the other bio-chemical substrates, thus generating larger biogas and methane yields. Moreover, digestion of sewage sludge alone produced biogas yields of 0.19 L /g VS and 0.33 L/g COD, and methane yields of 0.16 L/g VS and 0.28 L/g COD. Generally, co-digestion yields were higher than digestion yields of sewage alone. Using the OFAT method the results of the second batch test on glycerol demonstrated highest amounts of volatile solids (VS) reduction, chemical oxygen demand (COD) reduction, biogas yield and methane yield of 99.7%, 100%, 0.94 L (g VS added)-1 and 0.75 L (g VS added)-1 at a temperature, substrate to inoculum ratio and glycerol volume of 50℃, 1 (on VS basis) and 10 mL, respectively. Above 22 mL and substrate to inoculum ratio of 1, the process was inhibited. The DOE results suggested that the highest methane and biogas yields were 0.75 and 0.94 L (g VS added)-1, respectively. These results were similar to the OFAT results, thus the DOE software may be used to define the biogas and methane yields equations for glycerol. In conclusion, anaerobic co-digestion of bio-chemical substrates as co-substrates on sewage sludge was successfully applied to optimize methane and biogas yields. / M
45

Enzymology of activated sewage sludge during anaerobic treatment of wastewaters : identification, characterisation, isolation and partial purification of proteases

Tshivhunge, Azwiedziswi Sylvia January 2001 (has links)
During anaerobic digestion bacteria inside the digester require a carbon source for their growth and metabolism, sewage sludge was used as a carbon source in this study. The COD content was used to measure the disappearance of the substrate. COD content was reduced by 48.3% and 49% in the methanogenic and sulphidogenic bioreactors, respectively, while sulphate concentration was reduced by 40%, producing 70mg/L of hydrogen sulphide as the end product over the first 5-7 days. Sulphate (which is used as a terminal electron acceptor of sulphur reducing bacteria) has little or no effect on the sulphidogenic and methanogenic proteases. Sulphite and sulphide (the intermediate and end product of sulphate reduction) increased protease activity by 20% and 40%-80%, respectively. Maximum protease activity occurred on day 21 in the methanogenic reactor and on day 9 in the sulphidogenic reactor. The absorbance, which indicates the level of amino acid increased to 2 and 9 for methanogenic and sulphidogenic bioreactors, respectively. Proteases that were active during anaerobic digestion were associated with the pellet (organic particulate matter) of the sewage. These enzymes have an optimum activity at pH 10 and at temperature of 50°C. The proteases that were active at pH 5 and 7, had optimum temperatures at 30°C and 60°C, respectively. Due to their association with organic particulate matter, these enzymes were stable at their optimum temperatures for at least five hours at their respective pH. Inhibition by PMSF, TPCK and 1.10-phenanthroline suggested that proteases inside the anaerobic digester are a mixture of cysteine, serine and metalloproteases. At pH 5, however, EDTA appeared to enhance protease activity by 368% (three-fold). Acetic acid decreased protease activity by 21%, while both propionic and butyric acid at 200 mg/L cause total inhibition of protease activity while these acids at higher pH (where they exist as their corresponding salts) exerted little effect. Copper, iron and zinc inhibited protease activity by 85% at pH 5 with concentrations ranging between 200 and 600 mg/L. On the other hand, nickel, showed an increase in protease activity of nearly 250%. At pH 7 and 10, copper had no effect on protease activity while iron, nickel and zinc inhibited these enzymes by 20-40%. Proteases at pH 7 were extracted from the pellet by sonication, releasing 50% of the total enzymes into the solution. The enzymes were precipitated by ammonium sulphate precipitation, and further purified by ion exchange chromatography and gel filtration. Ion exchange chromatography revealed that most of the enzymes that hydrolyse proteins are negatively charged while gel filtration showed that their molecular weight is approximately 500 kDa.
46

Anaerobic digestion of baker's yeast wastewater using a UASB reactor and a hybrid UASB reactor

Chiu, Chen January 1990 (has links)
The start-up and step-up operation of two 16-liter, continuously operated, upflow anaerobic reactors receiving baker's yeast wastewater is presented in this thesis. The two reactors (A and B) were almost identical in construction. Reactor A was a conventional upflow anaerobic sludge blanket (UASB) reactor, and reactor B was a hybrid reactor. In addition to all the features of a UASB reactor, a fixed-film structure was installed in the mid section of the reactor B. Both reactors were operated at 35 °C and at a constant hydraulic retention time of 7 days. The waste strength, expressed in chemical oxygen demand (COD), was varied from 8 g COD liter⁻¹ (during the start-up) to 58 g COD liter⁻¹. The organic loading rate ranged from 1.1 to 9.4 g COD liter⁻¹ day⁻¹. The start-up lasted for the first 46 days. Towards the end of the start-up, methane production rates of 0.23 and 0.28 liter CH₄ liter⁻¹ day⁻¹ and COD reductions of 62.2% and 67.2% were achieved at organic loading rates of 1.1 and 1.3 g COD liter⁻¹ day⁻¹ for reactors A and B respectively. During the step-up operation, maximum methane production rates were, for reactors A and B respectively, 0.91 and 0.95 liter CH₄ liter⁻¹ day⁻¹ at organic loading rates of 5.8 and 6.4 g COD liter⁻¹ day⁻¹. In addition, reactor profiles for sludge concentration, pH, volatile fatty acids, and COD are also presented. / Applied Science, Faculty of / Chemical and Biological Engineering, Department of / Graduate
47

Investigation of hypothesized anaerobic stabilization mechanisms in biological phosphorus removal systems

Wable, Milind Vishnu 04 May 2006 (has links)
"Anaerobic Stabilization" (AnS) is a phenomenon previously observed in biological nutrient removal (BNR) systems that use anaerobic-aerobic sequencing for phosphorus and/or nitrogen removal. AnS manifests itself in the form of less-than-theoretical oxygen requirements for the extent of organics stabilization observed. The objectives of this study were to develop an improved methodology for the quantitative determination of AnS, verify the occurrence and validate the statistical significance of AnS, identify components of the AnS-related redox balance, and investigate possible explanations for AnS. A lab-scale continuous-flow A/O¹ system was operated with chemical inhibition of nitrification at a 12-hour nominal HRT, 10-day BSRT (Biological Solids Retention Time), 1Q RAS flow, and varying synthetic feed compositions. Data from this system were used to demonstrate that, by eliminating the need to quantify the clarifier OUR, the Boundary Exchange AnS determination method developed in this study afforded a major advantage over earlier methods. Non-zero AnS was shown to be a statistically significant, reproducible phenomenon. Carbon, oxygen, and sulfur were identified as the three main elements affecting AnS in the A/O system studied. A second lab-scale A2/O system operating at a 6-hour nominal HRT, 5-day BSRT, 1Q RAS flow, and 2Q RNX flow, and receiving raw municipal wastewater feed spiked with acetate, was uSed in conjunction with the A/O system to study possible AnS explanations. A combination of processes accounted for varying percentages of observed AnS. Hydrogen production explained 0.1 percent or less, while methane production explained almost 19 percent with formate in the feed but no more than 0.8 percent without it. Aeration-induced Stripping of reduced volatiles explained up to 6 percent. Attempts to identify the reduced volatiles revealed traces of ethanol but no n-butanol in the A2/O system. Limitations of the COD test were identified as a possible explanation for AnS that warrants further investigation. A unified speculative biochemical model consistent with all results of this study and with established theory, and capable of partially explaining observed AnS, is proposed in this study. ¹A/O and A2/O are trademarks of Air Products and Chemicals, Inc., Allentown, PA, U.S.A. / Ph. D.
48

The effect of biomass acclimation on the co-digestion of toxic organic effluents in anaerobic digesters

Chamane, Ziphathele January 2008 (has links)
Dissertation submitted in fulfillment of academic requirements for the Degree of Master of Technology: Chemical Engineering, Durban University of Technology, 2008. / Currently KwaZulu-Natal (KZN) province is populated with textile industry, which produces wastewater, some of which is not biodegradable. Due to the stringent environmental regulations the wastewater cannot be discharged into the rivers or public owned treatment systems. The alternative solution is to co-dispose this wastewater with easily biodegradable waste (labile effluent). The aim of this investigation was to develop a process protocol for the codigestion of high strength and toxic organic effluents under mesophilic conditions (35°C ± 2°C), with emphasis on the effect of biomass acclimation. A total of four effluents were chosen for this study, two labile (distillery and size) and two recalcitrant (scour dye and reactive dye). Two anaerobic batch experiments and two pilot scale trials were performed. The first batch anaerobic experiment investigated the influence of biomass source in anaerobic treatability. The second batch test investigated, whether biomass acclimation enhanced the biodegradability of pollutants. The pilot scale trials were the scale up version of the biomass acclimation test. The results showed sludge from Umbilo Wastewater Treatment Works was a superior biomass source, producing more gas and methane compared to Mpumalanga waste. For the high strength organic waste, the acclimated size and distillery samples produced 50% more biogas and methane compared to non-acclimated samples. This confirms that the biomass acclimation enhances the biodegradability. The biomass acclimation did not enhance the biodegradability of the recalcitrant effluent (scour dye). The pilot scale trials did not yield meaningful data; therefore it could not be proven if acclimation works on a larger scale. / Water Research Commission
49

Process optimization for partial oxidation of bacterial sludge in a sonochemical reactor

Beyers, Analene 04 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: It was found that bacterial sludge from anaerobic water treatment systems is produced internationally at a rate of 60 grams per person per day and the accumulation of the potentially hazardous by-product has become of increasing concern. The produced bacterial sludge is frequently pumped into dams, dried out and used as agricultural fertilizer. This bacterial sludge is expected to have a relatively high heating value and as such, has the potential to produce energy from the biomass. It is, therefore, advisable to utilize this energy potential as an alternative to conventional sludge disposal. This project aimed to improve the yield of syngas by optimizing the reactor design to partially oxidize bacterial sludge using a sonochemical reactor that is operated at bulk atmospheric conditions. The effect of different conditions was investigated and the optimum settings for syngas production were found by investigating temperature, pressure and the effect of the amplitude of operation that regulates the energy input by the ultrasonic equipment. The optimum conditions were used to investigate the kinetics involved in this process as well as to determine the energy consumption by the process. It was also required to study the feasibility of partially oxidizing bacterial sludge using a sonochemical reactor instead of conventional steam gasification and also as an alternative means of sludge disposal. By eliminating this pollutant source, the future environmental threat posed by an increasing population size will be minimized and energy will be utilized from a thus-far wasted energy source. The syngas that is produced is used as a green alternative to fossil fuels in the Gas-to-Liquids (GTL) process to produce liquids fuels. A thus-far wasted energy source will be consumed and fossil fuels can be saved in the process. It was found that the maximum hydrogen mole percentage produced is 0.141 mole % of the vapour phase with the maximum carbon monoxide mole percentage in the vapour phase at 1.896 mole %. This shows an improvement on work conducted by Beyers (2011) of 59 % for hydrogen, 92% for carbon monoxide and a reduction of 49 % for carbon dioxide. A kinetic study of the process indicated that the rate equations that describe the hydrogen and carbon monoxide production are zero order and, therefore, independent of initial concentration of the sludge. The rate constants were 0.0146 (mol % hydrogen/s) and 0.0183 (mol % hydrogen/s) for hydrogen and carbon monoxide, respectively. It was found that the most severe change to the higher heating value of the feed was a mere 0.27 mJ/kg from an original value of 9.81 mJ/kg. This therefore confirms that the reaction has not proceeded to completion. The statistical model predicted a maximum value for hydrogen production at 0.151 mole % in the product gas, 0.01 mole % from the measured maximum. It was also found that hydrogen is produced during the sonolysis of distilled water and that this confirms that the hydrogen production during partial oxidation of the sludge sample comes mainly from the water present in the sludge. The hydrogen produced when only using water, was found to be 0.127 mole % and when using the active sludge, the value was 0.116 mole % hydrogen in the vapour phase. The thermal decomposition of calcium carbonate in the lime that is used to treat the pH of the unit where the sludge originates from, followed by the formation of carbon monoxide during the Boudouard reaction, led to an increased amount of carbon monoxide present in the product gas. Ultrasonic intensity is defined as the amount of energy that is transferred to the sample per cubic meter of the internal surface area of the reactor vessel. It was found that the intensity that was delivered to the reactant was lower than expected as the reactor was operating at an efficiency of only 36%. The design intensity was 1.44 W/m2 and the actual delivered intensity was 0.52 W/m2. Based on a maximum yield of 0.00012 Nm3/kg, the cost of syngas production under the conditions described by this study, would amount to R 19.98/Nm3. This cost only implicates the operational expenses and does not take further downstream processing and initial capital investment repayments into account. Conventional steam gasification at a yield of 0.67 Nm3/kg has an operational syngas production cost of R 1.48/Nm3. This process was therefore found to not be economically feasible as the cost of utilizing ultrasound as opposed to normal steam gasification is more than ten times more expensive. It was concluded that the process was successfully optimized by the redesigning of the reactor and that carbon dioxide production was limited by excluding oxygen from the feed gas. It was also concluded that the sonolysis of water and the thermal decomposition of calcium carbonate, followed by the conversion of carbon dioxide to carbon monoxide, supplements the syngas production under the current operational conditions. Based on the production of no methane during the course of this study, the sonochemical process can be tied into the GTL process after the steam reforming unit. Due to the relatively high carbon dioxide content, the process will need to join the main feed gas stream that is fed into the carbon dioxide removal unit before it enters the GTL process to correct the desired feed gas ratio. Based on the very low syngas yields, the low hydrogen to carbon monoxide ratio in comparison to the required ratio of 2 as well as the high energy intensity required for this process, it can be concluded that the partial oxidation of biomass sludge in a sonochemical reactor is not feasible as an alternative technology to conventional steam gasification. The operating costs of the sonochemical unit would be nearly ten times that of steam gasification and is therefore concluded to not be a competitive technology to conventional steam gasification. It is recommended that the reactor design is reinvestigated to improve the delivered ultrasound intensity as well as the surface area where the ultrasonic waves are intensified. This would eliminate dead-zones. It was also recommended that the argon gas is continuously bubbled through the reactant mixture during experiments to eliminate the degassing effect caused when the ultrasound is initially emitted. The gas outlet of the process can then be connected to an online gas chromatograph (GC) with a thermal conductivity detector (TCD) and flame ionization detector (FID) methanizer in series as the TCD does not destroy the sample and this setup would improve the analytical process. The production of carbon monoxide from lime as well as the production of hydrogen from water during sonolysis needs to be investigated. The effect of radicals can also be studied by the addition of a radical scavenger to the process. It is recommended that the experimental design is reinvestigated and a design that will deliver similar information utilizing fewer data points should be chosen. Based on this model as well as further kinetic testing, it is recommended that a complete ASPEN model is developed to simulate the energy requirements to tie the ultrasonic process into the commercial plant. Based on this model, a complete feasibility study can then be conducted to determine the capital costs involved, the operating costs, the repayment period as well as taking the current costs of sludge disposal into account. / AFRIKAANSE OPSOMMING: Daar is gevind dat bakteriele slik internasionaal geproduseer word deur anaerobiese waterbehandelingseenhede teen ‘n tempo van 60 gram per person per dag en dat die opberging van hierdie gevaarlike byproduk ‘n groeiende probleem word. Die geproduseerde bakteriele slik word in damme gestoor, uitgedroog of gebruik as kunsmis in die landbou bedryf. Daar word vermoed dat hierdie baketriele slik oor ‘n hoe verwarmings waarde beskik en het daarom die potensiaal om energie te produseer uit die biomassa. Daarom is dit voorgestel om alternatiewe prosesse te ondersoek om van hierdie slik ontslae te raak en moontlik die energie wat beskikbaar is te gebruik. Die projek is daarop gefokus om die produksie van syngas te verbeter deur die reaktorontwerp te optimeer deur gebruik te maak van parsiele oksidasie van slik onder atmosferiese kondisies deur klankgolwe te gebruik. Die effek van verskillende operasionele kondisies is ondersoek en die optimale vlakke van syngas produksie is gevind deur temperatuur, druk en amplitude wat die hoeveelheid energie wat oorgedra word aan die reaktor reguleer, te ondersoek. Die optimale kondisies is ook gebruik om die kinetiese aspekte van die proses te ondersoek en ook om te kyk wat die sisteem se energie benodighede behels. Die haalbaarheid om baketriele slik parsieel te oksideer in ‘n sonochemiese reaktor is vergelyk met dit van konvensionele stoom vergassing van die biomassa en is ook ondersoek as ‘n alternatief om van die slik ontslae te raak. Deur die slik te verwyder as ‘n potensiele bron van besoedeling, kan die toekomstige omgewing’s risiko wat deur die toename in die bevolkkingsgroote tot gevolg is, verwyder word deur ‘n energie bron te gebruik wat tot dusver geignoreer is. Die syngas wat geproduseer word kan dan gebruik word in die “Gas-to-Liquids” (GTL) process om vloeistof brandstowwe te produseer. Dus sal ‘n omgewingsrisiko verminder word, ‘n energiebron word benuttig wat nooit van tevore benuttig is nie en fosiel brandstowwe kan gespaar word. Die maksimum waterstof wat geproduseer is, was 0.141 mol % in die gas fase met ‘n maksimum waarde vir koosltof monoksied van 1.896 mol % in die gas fase. Dit toon ‘n verbetering van 59 % vir waterstof, 92 % vir koolstof monoksied en ‘n vermindering van 49% in die koolstof dioksied wat deur Beyers (2011) geproduseer is. Die kinetiese studie het ondervind dat die “rate equation” van waterstof en koolstofmonoksied beskryf word deur nul-orde kinetika. Hierdie konstantes was 0.0146 (mol % waterstof/s) en 0.0183 (mol % waterstof/s) vir waterstof en koolstofmonoksied. Daar is ook gevind dat die grootste moontlik verandering in die hoe verwarmings waarde van die biomassa is ‘n skamele 0.27 mJ/kg van die oorspronklike waarde van 9.81 mJ/kg. Hierdie waarneming staaf dus die uitkoms dat die reaksie dus nie tot die einde verloop het nie. Die statistiese model het ‘n maksimum van 0.151 mol % voorspel wat 0.01 mol % meer was as die waarde wat gemeet is. Dit is ook gevind dat waterstof geproduseer word deur die sonoliese van water en dat hierdie bykomende waterstof deel uitmaak van die produkgas aangesien die slik grootliks uit water bestaan.Die hoveelheid waterstof in die gas fase wat geproduseer is tydens sonoliese van ‘n suiwer water monster, was 0.127 mol %. Die hoeveelheid waterstof in die gas fase wanneer die slik behandel is ten optimal kondisies, was 0.116 mol % gemiddeld. Die hitte degradering van kalsium karbonaat wat teenwoordig is in die kalk wat gebruik word om die pH van die produksie eenheid te reguleer, gevolg deur die Boudouard reaksie, het tot gevolg dat addisionele koolstof monoksied ook gevorm word. Ultrasoniese intensiteit kan gedefineer word as die hoeveelheid energy wat oorgedra word aan ‘n reaktant gebasseer op die oppervlak area aan die binnekant van die reaktor. Die intensiteit waarteen die voermateriaal blootgestel word aan die klankgolwe was laer as verwag met ‘n 36 % effektiwiteit. Die ontwerp spesifiseer ‘n intensiteit van 1.44 W/m2 en die intensiteit wat fisies gelewer is, was 0.521 W/m2. Die maksimum produksie van syngas was 0.00012 Nm3/kg, wat lei tot ‘n operasionele koste van R 19.98/Nm3 onder die kondisies van hierdie studie. Hierdie koste neem nie die oorsponkilke kapitaal vir die konstruksie, of die koste van verdere behandelik van die gas, in ag nie. Konvensionele stoom vergassing teen ‘n opbrengs van 0.67 Nm3/kg het ‘n operasionele koste van R 1.48/Nm3 tot gevolg. Die proses is dus ekonomies nie ‘n aantreklike opsie nie aangesien die kostes van syngas produksie met ultraklank meer as tien keer meer is as konvensionele stoom vergassing. Daar is tot die gevolgtrekking gekom dat die reaktor optimering suksesvol was en deur geen stuurstof te voer nie, die koolstofdioksied persentasie verminder is. Daar is ook tot die gevolgtrekking gekom dat die sonoliese van water, en die hitte degradering van kalsium karbonaat, gevolg deur die Boudouard reaksie, die syngas produksie supplementeer. Aangesien geen metaan gedurende hierdie studie geproduseer is nie, kan die sonochemiese proses inskakel by die GTL aanleg na die stoom hervormingseenhed. As gevolg van die hoe koolstofdioksied konsentrasie, sal die prosesstroom gemeng moet word met die produk stroom uit die stoom hervormings proses, wat gevoer word na die koolstofdioksied verwyderings eenheid. Hierdie eenheid is daarvoor verantwoordelik om die korrekte verhouding van gasse vir die GTL voer stroom te reguleer. Gebasseer op die baie lae syngas opbrengs, die lae waterstof tot koolstofmonoksied verhouding en die hoe energie behoeftes, is daar tot die gevolgtrekking gekom dat die parsiele oksidasdie van die biomassa in ‘n sonochemiese reaktor nie ‘n haalbare alternatief is vir konvensionele stoom vergassing nie. Die operasionele koste van die sonochemiese eenheid is ongeveer tien keer meer as die van stoom vergassing en daarom is die proses nie kompeterend nie. Daar word voorgestel dat die reaktor ontwerp hersien word om die gelewerde intensiteit te verbeter, sowel as om die kontak area waar die klankgolwe gekonsentreer is, te vergroot. Dit sal dooie sones uitskakel. Daar word ook voorgestel dat argon gas gedurende die eksperiment aanhoudende geborrel word deur die reaktant vloeistof in die reaktor om die ontgassingseffek uit te skakel sodra die klankgolwe aangeskakel word. Die gas uitlaat kan dan inlyn gekoppel word aan ‘n gas chromatograaf met ‘n termiese geleidings detektor (TCD) en ‘n vlam ionisasie detektor (FID) met metaan omskakeling, aangesien die TCD nie die monster vernietig nie. Hierdie opstelling behoort analitiese methodes te verbeter. Die produksie van koolstofmonoksied uit kalk sowel as die produksie van waterstof uit water gedurende sonoliese, moet verder ondersoek word. Die effek van radikale kan ook verder bestudeer word deur die gebruik van ‘n radikaal rower gedurende die proses. Daar word ook voorgestel dat die statistiese ontwerp herondersoek word sodat minder eksperimente gebruik kan word om soortgelyke resultate te bekom met minder data punte. Gebasseer op hierdie nuwe model en ‘n kinetiese studie, word dit aangeraai dat ‘n volledige ASPEN model gebou word om te simuleer hoe hierdie sonochemiese eenheid sal inskakel met die kommersiele eenheid. Dit sal dan moontlik wees om die energie benodighede van die proses te verstaan en gebasseer daarop, kan ‘n volledige haalbaarheid studie gedoen word wat kyk na oorspronklike installasie kostes, onderhouskostes, operasionele kostes sowel as die terugbetaling van die konstruksie kostes. Dan kan ‘n vergelyking getref word met die huidige kostes om van hierdie slik ontslae te raak en om die slik as ‘n brandstof te benut.
50

Treatment of poultry slaughterhouse wastewater using an expanded granular sludge bed anaerobic digester coupled with anoxic/aerobic hybrid side stream ultrafiltration membrane bioreactor

Williams, Yasheemah January 2017 (has links)
Thesis (Master of Engineering in Chemical Engineering)--Cape Peninsula University of Technology, 2017. / For more than a decade, poultry product consumption increased in developed and developing countries, with more than 470 new slaughterhouses being constructed in South Africa (SA). Customer demand for poultry products resulted in a rapidly growing poultry industry, with consequential increases in the quantity of organic solid and liquid waste being produced from the poultry slaughterhouses. Annually, the productivity and profitability within the livestock production sector has increased, an evaluation based on the number of slaughtered and sold animals. Potable water is required for these animals, resulting in the generation of high strength wastewaters. Instantaneous disposal of such wastewaters into the environment is concerning as it results in odour and the spreading of diseases in local rivers and freshwater sources. The generated poultry slaughterhouse wastewater (PSW) contains a high quantity of biodegradable organic, suspended and colloidal matter in the form of proteins, fats, oil and grease (FOG), protein from meat, blood, skin, and feathers, resulting in high Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD), which can contribute to environmental deterioration if not treated adequately before discharge. On average, PSW contains a high concentration of BOD, COD, nitrogen, pathogenic and non-pathogenic viruses, bacteria and parasites, including their eggs. These characteristics make PSW highly polluted with a large quantity of bird carcass debris including FOG. Due to the high concentration of organic matter and suspended solids in the wastewater, it is necessary to pre-treat the PSW prior to sequential anaerobic treatment. Most of the contaminants present in the PSW can be reduced by means of numerous treatment steps, i.e. physical, chemical and biological treatment. For this study, biological treatment methods, physical separation methods, and a membrane bioreactor system, were used to treat PSW. The biological treatment methods used were an anaerobic digester (AD) followed by a single stage nitrification/denitrification reactor and then a third stage in which an ultrafiltration (UF) and Microfiltration (MF) membrane bioreactor (MBR) was used. The AD used was an Expanded Granular sludge Bed Reactor (EGSB) as anaerobic digestion is one of the most effective biological wastewater treatment methods used, as it reduces the organic matter to even produce biogas as a renewable energy source. The basis of anaerobic treatment method relies on suitable bacteria cultivated in the absence of dissolved oxygen, facilitating decomposition of organic matter into a renewable source such as biogas. Similarly, biological nitrification/denitrification processes for the removal of total nitrogen (TN) in wastewater has become one of the most commonly used processes within the wastewater treatment sector. Nitrification and denitrification processes can be performed by some microorganisms within the wastewater in Wastewater Treatment Plants (WWTPs) The PSW used was collected at different times from a local poultry slaughterhouse in the Western Cape (South Africa) and stored in a refrigerator at 4°C until it was fed to the first stage of the treatment which was the EGSB. Before being fed to the EGSB, the PSW was filtered with a sieve to remove feathers and agglomerated FOG to avoid clogging of the tubing. The EGSB was inoculated with 0.747 L anaerobic granular sludge, had a working volume of 2.7 L, an inner diameter of 0.065 m and a height of 0.872 m respectively. Ceramic marbles with an average diameter of 0.0157m were placed at the bottom of the bioreactor as packing for the underdrain and to maintain the granular sludge within the heated section of the bioreactor. The EGSB was fed with three types of PSW: 50% (v/v), 70% (v/v), which was diluted with distilled water. Thereafter once the system stabilised the reactor was fed with undiluted PSW (100%). Each dilution was operated at different Hydraulic Retention Times (HRTs) and Organic Loading Rates (OLRs), with average HRTs used being 62.5, 57.5 and 49.65 h. Furthermore, the average OLRs were 1, 2 and 3 g tCOD/L.day respectively. The performance of the EGSB was determined using tCOD, Total Suspended Solids (TSS) and FOG, with overall averaged removal rates for these constituents being 69%, 98% and 92% respectively. The highest tCOD removal of 93 % (optimal efficiency) was obtained at an average HRT of 57.5 h with a corresponding average OLR of 2 g tCOD/L.day.

Page generated in 0.0932 seconds