• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation on the cause and control of bacterial foaming in the activated sludge process.

January 1992 (has links)
by Chung Wai Ki. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1992. / Includes bibliographical references (leaves 110-120). / Acknowledgments --- p.i / Abstract --- p.ii / Table of Content --- p.iii / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Sewage Treatment --- p.1 / Chapter 1.1.1 --- Overview --- p.1 / Chapter 1.1.2 --- Types of Treatment --- p.2 / Chapter 1.2 --- Activated Sludge Process --- p.3 / Chapter 1.2.1 --- Overview --- p.3 / Chapter 1.2.2 --- Biology of Activated Sludge --- p.3 / Chapter 1.2.3 --- Operation of the Activated Sludge Process --- p.4 / Chapter 1.2.4 --- Floe Formation in Activated Sludge Process --- p.10 / Chapter 1.2.5 --- Operational Problems Associated with the Activated Sludge Process --- p.12 / Chapter 1.2.5.1 --- Bulking --- p.12 / Chapter 1.2.5.2 --- Foaming --- p.14 / Chapter 1.3 --- Foaming in Activated Sludge Process --- p.15 / Chapter 1.3.1 --- Overview --- p.15 / Chapter 1.3.2 --- Causes of Foaming --- p.16 / Chapter 1.3.2.1 --- Biology of Nocardia --- p.18 / Chapter 1.3.2.2 --- Growth Strategy of Nocardia --- p.18 / Chapter 1.3.2.3 --- Metabolic Specialization of Nocardia amarae --- p.19 / Chapter 1.3.3 --- Controls of Foaming --- p.20 / Chapter 1.4 --- Microbial Lipid and Bacterial Foaming --- p.23 / Chapter 1.4.1 --- Overview --- p.23 / Chapter 1.4.2 --- Fatty Acids in Bacteria --- p.24 / Chapter 1.4.3 --- Analytical Techniques --- p.25 / Chapter 1.4.3.1 --- Chromatography --- p.25 / Chapter 1.4.3.2 --- Gas Chromatography - Mass Spectrometry (GC-MS) --- p.26 / Chapter 1.4.4 --- Significance of Fatty Acids to Foaming --- p.27 / Chapter 1.5 --- Disinfection --- p.29 / Chapter 1.5.1 --- Overview --- p.29 / Chapter 1.5.2 --- Types of Disinfectants --- p.30 / Chapter 1.5.3 --- Mechanism of Disinfection --- p.31 / Chapter 1.5.4 --- Disinfection with Chlorine and Hypochlorite --- p.31 / Chapter 1.5.5 --- Chemistry of Chlorine Disinfection --- p.32 / Chapter 2. --- Objectives of Study --- p.35 / Chapter 3. --- Materials and Methods --- p.37 / Chapter 3.1 --- Sample Collection: --- p.37 / Chapter 3.2 --- Biological Studies of Activated Sludge Samples --- p.37 / Chapter 3.2.1 --- Microscopic Examination --- p.37 / Chapter 3.2.2 --- Isolation of Foam-Causing Filamentous Bacteria --- p.38 / Chapter 3.3 --- Physiology Studies of Nocardia amarae --- p.39 / Chapter 3.3.1 --- Growth Kinetics --- p.40 / Chapter 3.3.2 --- Effects of Fatty Acids on Nocardia amarae --- p.40 / Chapter 3.3.2.1 --- Fatty Acids as Sole Carbon Source --- p.41 / Chapter 3.3.2.2 --- Growth Stimulation --- p.42 / Chapter 3.3.2.3 --- Foam Test --- p.43 / Chapter 3.4 --- Fatty Acids Analysis --- p.43 / Chapter 3.4.1 --- Fatty Acid Extraction --- p.43 / Chapter 3.4.2 --- GC Analysis --- p.45 / Chapter 3.4.3 --- GC-MS Analysis --- p.46 / Chapter 3.5 --- Laboratory-Scale Activated Sludge Unit --- p.46 / Chapter 3.5.1 --- Set Up --- p.46 / Chapter 3.5.2 --- Performance Assessment of Laboratory-Scale Unit --- p.52 / Chapter 3.5.2.1 --- Physical Parameters --- p.52 / Chapter 3.5.2.2 --- Chemical Parameters --- p.54 / Chapter 3.5.2.3 --- Biological Parameters --- p.55 / Chapter 3.5.3 --- Anoxic Condition --- p.56 / Chapter 3.6 --- Toxicity Studies --- p.56 / Chapter 3.6.1 --- Comparative Toxicity Studies in Pure Culture --- p.56 / Chapter 3.6.2 --- Chlorination Studies of the Laboratory-Scale Unit --- p.58 / Chapter 3.6.3 --- Residual Chlorine Measurement --- p.58 / Chapter 3.7 --- Scanning Electron Microscopy --- p.60 / Chapter 4. --- Results --- p.61 / Chapter 4.1 --- Biological Studies of Activated Sludge --- p.61 / Chapter 4.1.1 --- Microscopic Examination --- p.61 / Chapter 4.1.2 --- Isolation of Foam-Causing Filamentous Bacteria --- p.61 / Chapter 4.2 --- Physiological Studies of Nocardia amarae --- p.65 / Chapter 4.2.1 --- Growth Kinetics --- p.65 / Chapter 4.2.2 --- Effects of Fatty Acids on Nocardia amarae --- p.69 / Chapter 4.2.2.1 --- Fatty Acids as Sole Carbon Source --- p.69 / Chapter 4.2.2.2 --- Growth Stimulation --- p.69 / Chapter 4.2.2.3 --- Foam Test --- p.69 / Chapter 4.3 --- Fatty Acids Analysis --- p.75 / Chapter 4.4 --- Laboratory-Scale Activated Sludge Unit --- p.80 / Chapter 4.4.1 --- Assessment of Performance of the Laboratory-Scale Unit --- p.80 / Chapter 4.4.2 --- Under Anoxic Condition --- p.80 / Chapter 4.5 --- Toxicity Studies --- p.85 / Chapter 4.5.1 --- Comparative Toxicity Studies in Pure Culture --- p.85 / Chapter 4.5.2 --- Chlorination Studies of Laboratory-Scale Unit --- p.85 / Chapter 4.5.3 --- Residual Chlorine Measurement --- p.91 / Chapter 5. --- Discussion --- p.94 / Chapter 5.1 --- Biological Studies of Activated Sludge Samples --- p.94 / Chapter 5.1.1 --- Microscopic Examination --- p.94 / Chapter 5.1.2 --- Isolation of Foam-Causing Filamentous Bacteria --- p.95 / Chapter 5.2 --- Physiological Studies of Nocardia amarae --- p.96 / Chapter 5.2.1 --- Growth Kinetics --- p.96 / Chapter 5.2.2 --- Effects of Fatty Acids on Nocardia amarae --- p.96 / Chapter 5.2.2.1 --- Fatty Acids as Sole Carbon Source --- p.96 / Chapter 5.2.2.2 --- Growth Stimulation --- p.97 / Chapter 5.2.2.3 --- Foam Test --- p.98 / Chapter 5.3 --- Fatty Acids Analysis --- p.99 / Chapter 5.4 --- Laboratory-Scale Activated Sludge Unit --- p.101 / Chapter 5.4.1 --- Assessment of Performance of the Laboratory-Scale Unit --- p.102 / Chapter 5.4.2 --- Under Anoxic Condition --- p.103 / Chapter 5.5 --- Toxicity Studies --- p.103 / Chapter 5.5.1 --- Comparative Toxicity Studies in Pure Culture --- p.103 / Chapter 5.5.2 --- Chlorination Studies of the Laboratory-Scale Unit --- p.105 / Chapter 6. --- Conclusion --- p.107 / Chapter 7. --- Summary --- p.108 / Chapter 8. --- References --- p.110
2

Effects of fatty acids on bacterial foaming in activated sludge process.

January 1999 (has links)
by Sonia, Tze Yan Lo. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 132-147). / Abstracts in English and Chinese. / Acknowledgments --- p.i / Abstract --- p.ii / Table of Content --- p.iii / List of Figures --- p.ix / List of Tables --- p.xiii / List of Abbreviations --- p.xv / Terminology --- p.xvii / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Objectives of sewage treatment process --- p.1 / Chapter 1.1.1 --- Types of treatment --- p.1 / Chapter 1.1.2 --- Activated sludge process --- p.2 / Chapter 1.1.3 --- Functioning of activated sludge process --- p.2 / Chapter 1.2 --- Common microbially mediated solid separation problems --- p.4 / Chapter 1.3 --- Bacterial foaming --- p.4 / Chapter 1.4 --- Factors enhancing foam production --- p.5 / Chapter 1.4.1 --- Substrates present in sewage --- p.6 / Chapter 1.4.2 --- Operating conditions --- p.8 / Chapter 1.4.3 --- Overpopulation of foaming bacteria --- p.8 / Chapter 1.5 --- Bacteria reported for foaming --- p.9 / Chapter 1.5.1 --- Foaming bacteria reported in different countries --- p.9 / Chapter 1.5.2 --- Nocardia Biology --- p.10 / Chapter 1.6 --- Metaboilsm of hydrophobic substances in sewage --- p.11 / Chapter 1.6.1 --- Metabolism of alkanes --- p.11 / Chapter 1.6.2 --- Metabolism of grease and oils --- p.11 / Chapter 1.6.3 --- Functions of lipids in the formation of bacterial foam --- p.11 / Chapter 1.7 --- Competition between floc-formers and foam-formers --- p.12 / Chapter 1.7.1 --- Interactions between microbial populations in activated sludge process --- p.12 / Chapter 1.7.2 --- Monod relationship and kinetic selection --- p.15 / Chapter 1.7.3 --- Effects of grease and oils in dominance of foaming bacteria --- p.17 / Chapter 1.8 --- Suggested mechanisms for bacterial foaming --- p.18 / Chapter 1.8.1 --- Mechanism suggested in early stage --- p.18 / Chapter 1.8.2 --- Froth flotation theory --- p.18 / Chapter 1.9 --- Problems from foaming --- p.21 / Chapter 1.10 --- Control of filamentous bacterial foaming --- p.22 / Chapter 2. --- Objectives of the study --- p.26 / Chapter 3. --- Materials and Methods --- p.27 / Chapter 3.1 --- Sample collection --- p.27 / Chapter 3.2 --- Isolation of major foaming and non-foaming bacteria --- p.27 / Chapter 3.2.1 --- Isolation of foaming bacteria --- p.27 / Chapter 3.2.2 --- Isolation of non-foaming bacteria --- p.30 / Chapter 3.3 --- "Physiological studies on type strain Nocardia amarae ATCC 27810, isolated major foaming bacterium, Nocardia sp. CU-2 and non- foaming bacterium, Aeromonas sp. CU-1" --- p.31 / Chapter 3.4 --- Effects of fatty acids on growth kinetics of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in pure culture --- p.32 / Chapter 3.5 --- Effects of fatty acids on growth yields of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in pure culture --- p.34 / Chapter 3.6 --- Effects of fatty acids on growth yields of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in mixed culture --- p.37 / Chapter 3.7 --- Effect of fatty acids on the propensity of foam formation of Nocardia sp. CU-2 growing with different fatty acids --- p.38 / Chapter 3.8 --- Effects of fatty acids on hydrocarbon affinity (HA) of Nocardia sp CU-2 --- p.39 / Chapter 3.9 --- "Effects of fatty acids on the filamentous growth, nocardial growth, foaming abilities and settling abilities of activated sludge in batch cultures of foaming and non-foaming samples" --- p.43 / Chapter 4. --- Results --- p.48 / Chapter 4.1 --- Isolation of foaming and non-foaming bacteria --- p.48 / Chapter 4.1.1 --- Isolation of foaming bacteria --- p.48 / Chapter 4.1.2 --- Isolation of non-foaming bacteria --- p.48 / Chapter 4.2 --- "Physiological studies on type strain Nocardia amarae ATCC 27810, isolated major foaming bacterium, Nocardia sp. CU-2 and non- foaming bacterium, Aeromonas sp. CU-1" --- p.56 / Chapter 4.3 --- Effects of fatty acids on growth kinetics of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in pure culture --- p.56 / Chapter 4.4 --- Effects of fatty acids on growth yields of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in pure culture --- p.60 / Chapter 4.4.1 --- Effects of fatty acids on Nocardia sp. CU-2 --- p.77 / Chapter 4.4.2 --- Effects of fatty acids on Aeromonas sp. CU-1 --- p.77 / Chapter 4.5 --- Effects of fatty acids on growth yields of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in mixed culture --- p.78 / Chapter 4.6 --- Effect of fatty acids on the propensity of foam formation of Nocardia sp. CU-2 growing with different fatty acids --- p.78 / Chapter 4.7 --- Effects of fatty acids on hydrocarbon affinity (HA) of Nocardia sp CU-2 --- p.83 / Chapter 4.8 --- "Effects of fatty acids on the filamentous growth, nocardial growth, foaming abilities and settling abilities of activated sludge in batch cultures of foaming and non-foaming samples" --- p.103 / Chapter 4.8.1 --- The filamentous growth of activated sludge --- p.103 / Chapter 4.8.2 --- Nocardial count --- p.103 / Chapter 4.8.3 --- Foam ratings --- p.107 / Chapter 4.8.4 --- Sludge settling ability --- p.107 / Chapter 5. --- Discussion --- p.114 / Chapter 5.1 --- "Physiological studies on type strain Nocardia amarae ATCC 27810, isolated major foaming bacterium, Nocardia sp. CU-2 and non- foaming bacterium, Aeromonas sp. CU-1" --- p.114 / Chapter 5.2 --- Effects of fatty acids on growth kinetics of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in pure culture --- p.114 / Chapter 5.2.1 --- Inhibition effects of MC fatty acids on growth of Nocardia sp. CU-2 --- p.115 / Chapter 5.2.2 --- Effects of fatty acids on specific growth rates --- p.115 / Chapter 5.2.3 --- Length of lag phase --- p.115 / Chapter 5.2.4 --- Kinetic selection of Nocardia sp. CU-2 and Aeromonas sp. CU-1 --- p.116 / Chapter 5.3 --- Effects of fatty acids on growth yields of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in pure culture --- p.117 / Chapter 5.3.1 --- Growth of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in different media --- p.117 / Chapter 5.3.2 --- "Effects of fatty acids on Nocardia sp, CU-2" --- p.118 / Chapter 5.3.3 --- Effects of fatty acids on Aeromonas sp. CU-1 --- p.119 / Chapter 5.4 --- Effects of fatty acids on growth yields of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in mixed culture --- p.119 / Chapter 5.4.1 --- Effects of fatty acids in NB --- p.119 / Chapter 5.4.2 --- Effects of fatty acids in MM --- p.120 / Chapter 5.4.3 --- Effects of fatty acids in SS --- p.121 / Chapter 5.5 --- Effect of fatty acids on the propensity of foam formation of Nocardia sp. CU-2 growing with different fatty acids --- p.122 / Chapter 5.6 --- Effects of fatty acids on hydrocarbon affinity (HA) of Nocardia sp CU-2 --- p.122 / Chapter 5.6.1 --- Differences in HA of Nocardia sp. CU-2 among three hydrocarbons --- p.122 / Chapter 5.6.2 --- Differences in HA of Nocardia sp. CU-2 among three different media --- p.123 / Chapter 5.6.3 --- Effects of fatty acids on HA of Nocardia sp. CU-2 --- p.123 / Chapter 5.7 --- "Effects of fatty acids on the filamentous growth, nocardial growth, foaming and settling abilities of activated sludge in batch cultures" --- p.124 / Chapter 5.7.1 --- Abundance of filamentous microorganisms in activated sludge --- p.124 / Chapter 5.7.2 --- Nocardial count --- p.124 / Chapter 5.7.3 --- Foam ratings --- p.125 / Chapter 5.7.4 --- Sludge settling ability --- p.126 / Chapter 6. --- Conclusion --- p.127 / Chapter 7. --- Summary --- p.129 / Chapter 8. --- References --- p.132

Page generated in 0.1982 seconds