• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of deterioration models for stormwater pipe systems

Tran, Huu Dung. January 2007 (has links)
Thesis (Ph.D.)--Victoria University (Melbourne, Vic.), 2007.
2

Storm water runoff treatment with multi-chamber pipes

Su, Yuming. January 2002 (has links)
Thesis (M.S.)--Ohio University, November, 2002. / Title from PDF t.p. Includes bibliographical references (leaves 200-203).
3

Long-term creep of encased polymer liners

Rangarajan, Shalini. January 2002 (has links)
Thesis (M.S.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains xiv, 117 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 111-113).
4

Frictional losses of air flowing through plastic corrugated and PVC sewer pipe

Duarte-Massey, Jaime. January 1982 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1982. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 83-84).
5

Degradation modeling of concrete submitted to biogenic acid attack

Yuan, Haifeng, Yuan, Haifeng 03 December 2013 (has links) (PDF)
Bio-deterioration of concrete, which is very common in sewer system and waste water treatment plant, results in significant structure degradation. Normally, the process can be described by the two following parts: 1) Biochemistry reactions producing biogenic aggressive species in biofilms which are spread on the surface of concrete. As one of the most significant biogenic acid in sewer pipes, sulfuric acid (H2SO4) is produced by sulfur oxidizing bacteria (SOB). 2) Chemical reactions between biogenic aggressive species and cement hydration products which is responsible for concrete deterioration. A reactive transport model is proposed to simulate the bio-chemical and chemical deterioration processes of cementitious materials in contact with SOB and H2S or sulfuric acid solution. This model aims at solving simultaneously transport and biochemistry/chemistry in biofilms and cementitious materials by a global coupled approach. To provide an appropriate environment for SOB to grow, the surface neutralization of concrete (i.e., the absorption of H2S and aqueous H2S corrosion) is considered. To obtain the amount of biogenic H2SO4, the bio-oxidation of H2S by the activation of bacteria is simulated via a simplified model. To provide a suitable environment for SOB to grow, the abiotic pH reduction of concrete process is introduced. The production rate of H2SO4 is governed by the pH in the biofilms and the content of H2S in gas.It is assumed that all chemical processes are in thermodynamical equilibrium. The dissolution of portlandite (CH) and calcium silicate hydrates (C-S-H) and the precipitation of gypsum (C¯S H2) and calcium sulfide are described by mass action law and threshold of ion activity products. To take into account the continuous decrease of the Ca/Si ratio during the dissolution of C-S-H a generalization of the mass action law is applied. By simplifying the precipitation process of gypsum, a damage model is introduced to characterize the deterioration of concrete due to the swelling of gypsum. Thus, the porosity evolution and deterioration depth during deterioration process are taken into account. Only diffusion of aqueous species are considered. Different diffusion coefficients are employed for various ions and Nernst-Planck equation was implemented. The effect of the microstructure change during deterioration on transport properties is considered as well. For both biofilms and cementitious materials, the balance equations of total mass of each atom (Ca, Si, S, K, Cl) are used to couple transport equations and (bio-)chemical reactions. The model is implemented within a finite-volume code, Bil. Following the introduction of principle of the finite volume method, the coupling of the bio-chemistry process in biofilms and chemistry process in cementitious materials is illustrated. By this model, some experiments reported in literature, including chemical immersion tests (statical solution condition and flow solution condition) and microbiological simulation tests, are simulated. The numerical results and the experimental observations are compared and discussed. The influence of properties of cementitious materials (initial porosity, carbonated layer, etc.) and environmental factors (concentration of H2SO4, content of H2S, etc.) are investigated by this model as well. Furthermore, a long term predictionis conducted
6

Dynamique des effluents et des contaminants associés au système d’assainissement de la Communauté d’Agglomération de Pau Pyrénées (CDAPP). / Wastewater and contaminants dynamic in CDAPP (Pau urban community) sewer system

Bersinger, Thomas 10 December 2013 (has links)
L’optimisation du système d’assainissement et la réduction des rejets d’eaux résiduaires urbaines non traitées est devenue un enjeu majeur pour de nombreuses collectivités dans le but d’atteindre les objectifs de qualité des milieux aquatiques fixés par la Directive Cadre européenne sur l’Eau (DCE 2000/60/CE). Pour cela, une parfaite connaissance du système d’assainissement est nécessaire. L’objectif de cette thèse, financée par la CDAPP et l’Agence de l’Eau Adour Garonne, était l’étude de la dynamique du système d’assainissement de la CDAPP et de sa contribution sur les flux de polluants dans le milieu récepteur (le Gave de Pau). La première étape du travail a été consacrée à la caractérisation hydraulique et physicochimique du système d’assainissement par temps sec et par temps de pluie. Une étude hydraulique a été tout d’abord réalisée et a permis de mieux appréhender la dynamique des déversements via les déversoirs d’orage (DO) en fonction de la nature des évènements pluvieux. D’autre part, la caractérisation physico chimique des eaux usées (matières en suspension ou MES, demande chimique en oxygène ou DCO, métaux, hydrocarbures aromatiques polycycliques) a mis en évidence que pour l’ensemble de ces paramètres, une nette augmentation des flux par temps de pluie était observée en particulier en début d’événement (augmentation d’un facteur de 2 à 10). Ce phénomène s’explique par l’apport de polluant par les eaux de ruissellement et l’érosion des dépôts accumulés par temps sec dans les réseaux. Seul l’azote total se comporte différemment puisqu’il est majoritairement présent sous forme dissoute. Afin de mieux appréhender la dynamique des paramètres polluants réglementaires (MES, DCO et azote), un suivi haute fréquence (au pas de temps de cinq minutes) a été mis en place durant un an à l’aide de sondes de turbidité et de conductivité. Ce suivi en continu constitue la troisième partie de ce travail. Des corrélations (r² ≈ 0,9) ont été établies entre d’une part, les paramètres polluants DCO et MES, et la turbidité et d’autre part, entre la conductivité et l’azote total. Ces enregistrements ont permis une meilleure compréhension du fonctionnement du système d’assainissement : mise en évidence du phénomène de first flush, estimation des flux polluants déversés via les DO, étude des phénomènes de stockage dans les réseaux. La dernière partie de cette thèse vise à l’étude de la contribution des rejets d’assainissement dans le milieu récepteur. Elle a permis de démontrer la contribution modérée du rejet de sortie de STEP (entre 1 et 15 %) par temps sec. Par temps de pluie, la contribution du système d’assainissement via les DO est extrêmement variable suivant les conditions hydro-climatiques (de < 1 % à plus de 50 %). Ce travail a permis d’une part d’apporter des résultats utilisables par le gestionnaire de l’assainissement pour optimiser la gestion des eaux usées de la CDAPP. D’autre part, ce travail apporte des résultats plus fondamentaux relatifs à une meilleure connaissance de la dynamique hydrologique et physicochimique des eaux résiduaires urbaines et des polluants associés tels que la mise en évidence, à l’aide d’outils statistiques, des paramètres influençant les déversements et les concentrations en polluants par temps de pluie. / Optimization of sewer system and reduction of untreated wastewater discharges has become a key issue for many communities in order to achieve the good quality of aquatic environments set by the European Framework Directive (WFD 2000/60/EC). For this, a perfect knowledge of sanitation is required. The objective of this thesis, funded by CDAPP and Adour Garonne Water Agency, was the study of the dynamics of the CDAPP sanitation and its contribution to the pollutants fluxes in the receiving environment (the river Gave de Pau). The first step of the work was devoted to the hydraulic and physicochemical wastewater characterization during dry and wet weather. A hydraulic study was first carried and helped to better understand the dynamics of discharges through the combined sewer overflow (CSO) according to the rainfall events characteristics. On the other hand, the physico-chemical characterization of wastewater (suspended solids or TSS, chemical oxygen demand or COD, metals, polycyclic aromatic hydrocarbons) showed that for all these parameters, a clear increase of pollutant fluxes was observed at the beginning of the rainfall event (increase by a factor of 2 to 10). This phenomenon is explained by the runoff contribution and erosion of sediments accumulated in the networks during dry weather periods. Only total nitrogen behaves differently because it’s mostly dissolved. To better understand the dynamics of pollutants parameters (TSS, COD and nitrogen), high frequency monitoring (every five minutes) has been established for one year with turbidity and conductivity sensors. This continuous monitoring is the third part of this work. Correlation functions (r² ≈ 0.9) were found between, the pollutant parameters COD and TSS, and turbidity, and secondly, between conductivity and total nitrogen. These records allowed a better understanding of sanitation system: highlighting the first flush phenomenon, estimation of pollutant loads discharged by CSO, study of storage networks phenomenon. The last part of this thesis aims to study the contribution of wastewater discharges to the receiving environment. It demonstrated the moderate contribution of rejection output STEP (between 1% and 15%) in dry weather. In rainy weather, the contribution of sanitation through CSO is extremely variable depending on the hydro-climatic conditions (<1% to over than 50%). This work has led to provide usable results for the sanitation manager to optimize CDAPP wastewater treatment. Moreover, this work provides most fundamental results for a better understanding of the hydrological and physicochemical dynamics of urban wastewater and associated pollutants such as highlighting, using statistical tools, the parameters influencing pollutant concentrations during rainfall events.
7

Degradation modeling of concrete submitted to biogenic acid attack / Modélisation de la dégradation du béton due aux attaques acidesbiogéniques.

Yuan, Haifeng 03 December 2013 (has links)
La biodétérioration du béton, très courante dans les systèmes d'égouts et de traitement des eaux usées, entraîne une dégradation significative de la structure. Normalement, le processus peut être décrit par les deux étapes suivantes : 1) Des réactions biochimiques produisent des espèces agressives dans les biofilms qui tapissent la surface du béton. L'un des plus importants acides biogéniques que l'on trouve dans les canalisations d'égout est l'acide sulfurique (H2 SO4 ) que est produit par des bactéries sulfo-oxydante (BSO)à partir de l'hydrogène sulfuré (H2 S). 2) Les réactions chimiques entre les espèces agressives biogéniques et les produits d'hydratation du ciment sont responsables de la détérioration du béton. Un modèle de transport réactif est proposé afin de simuler les processus des détériorations chimique et biochimique des matériaux cimentaires en contact avec les BSO et le H2 S ou une solution d'acide sulfurique. L'objectif de ce modèle est de résoudre simultanément le transport et la biochimie / chimie dans les biofilms et les matériaux cimentaires par une approche globale couplée. Afin de fournir un environnement approprié pour la croissance des BSO, la neutralisation de la surface du béton (i.e., l'absorption de H2 S et la corrosion aqueuse de H2 SO4 ) est considérée. Pour obtenir la quantité de H2 SO4 biogénique, la bio-oxydation du H2 S par l'activation des bactéries est simulée par un modèle simplifié. Puis, pour alimenter un environnement convenable pour la croissance des BSO, la réduction abiotique du pH du béton est introduite. Le taux de production de H2 SO4 est régi par la valeur du pH dans les biofilms et la quantité de H2 S dans le gaz. On fait l'hypothèse que tous les processus chimiques sont en équilibre thermodynamique. La dissolution de la portlandite (CH) et du silicate de calcium hydratés (C-S-H), ainsi que la précipitation de gypse (CSH2) et du sulfure de calcium sont décrites par la loi d'action de masse et le seuil des produits d'activité ionique. Pour prendre en compte la décroissante continue du rapport Ca/Si lors de la dissolution de la C-S-H, une généralisation de la loi d'action de masse est appliquée. En simplifiant le processus de précipitation du gypse, un modèle d'endommagement est introduit pour caractériser la détérioration du béton due au gonflement du gypse. Ainsi, l'évolution de la porosité et de la profondeur de la détérioration pendant le processus de dégradation sont pris en compte. Seule la diffusion des espèces aqueuses est considérée. Différents coefficients de diffusion sont utilisés pour divers ions et l'équation de Nernst-Planck est implémentée. L'effet, pendant la détérioration, de la modification de la microstructure sur les propriétés de transport est aussi considéré. Pour les biofilms et les matériaux cimentaires, les équations d'équilibre de masse totale de chaque atome (Ca, Si, S, K, Cl) sont utilisées pour coupler les équations de transport et les réactions (bio) chimiques. Le modèle est implémenté dans un code volumes finis, Bil. Grâce à l'introduction de la méthode des volumes finis, on illustre le couplage du processus bio-chimie dans les biofilms et le processus de la chimiedes matériaux cimentaires. Par ce modèle, certaines expériences rapportées dans la littérature, dont des tests d'immersion chimiques (condition de la solution statique et condition de la solution d'écoulement) et des simulations microbiologiques, sont simulées. Les résultats numériques et les observations expérimentales sont comparés et discutés. L'influence des propriétés des matériaux cimentaires (porosité initiale, couche carbonatée, etc.) et les facteurs d'environnement (concentration de H2 SO4 quantité de H2 S etc) sont aussi étudiés par ce modèle. En outre, une prédiction à long terme est menée / Bio-deterioration of concrete, which is very common in sewer system and waste water treatment plant, results in significant structure degradation. Normally, the process can be described by the two following parts: 1) Biochemistry reactions producing biogenic aggressive species in biofilms which are spread on the surface of concrete. As one of the most significant biogenic acid in sewer pipes, sulfuric acid (H2SO4) is produced by sulfur oxidizing bacteria (SOB). 2) Chemical reactions between biogenic aggressive species and cement hydration products which is responsible for concrete deterioration. A reactive transport model is proposed to simulate the bio-chemical and chemical deterioration processes of cementitious materials in contact with SOB and H2S or sulfuric acid solution. This model aims at solving simultaneously transport and biochemistry/chemistry in biofilms and cementitious materials by a global coupled approach. To provide an appropriate environment for SOB to grow, the surface neutralization of concrete (i.e., the absorption of H2S and aqueous H2S corrosion) is considered. To obtain the amount of biogenic H2SO4, the bio-oxidation of H2S by the activation of bacteria is simulated via a simplified model. To provide a suitable environment for SOB to grow, the abiotic pH reduction of concrete process is introduced. The production rate of H2SO4 is governed by the pH in the biofilms and the content of H2S in gas.It is assumed that all chemical processes are in thermodynamical equilibrium. The dissolution of portlandite (CH) and calcium silicate hydrates (C-S-H) and the precipitation of gypsum (C¯S H2) and calcium sulfide are described by mass action law and threshold of ion activity products. To take into account the continuous decrease of the Ca/Si ratio during the dissolution of C-S-H a generalization of the mass action law is applied. By simplifying the precipitation process of gypsum, a damage model is introduced to characterize the deterioration of concrete due to the swelling of gypsum. Thus, the porosity evolution and deterioration depth during deterioration process are taken into account. Only diffusion of aqueous species are considered. Different diffusion coefficients are employed for various ions and Nernst-Planck equation was implemented. The effect of the microstructure change during deterioration on transport properties is considered as well. For both biofilms and cementitious materials, the balance equations of total mass of each atom (Ca, Si, S, K, Cl) are used to couple transport equations and (bio-)chemical reactions. The model is implemented within a finite-volume code, Bil. Following the introduction of principle of the finite volume method, the coupling of the bio-chemistry process in biofilms and chemistry process in cementitious materials is illustrated. By this model, some experiments reported in literature, including chemical immersion tests (statical solution condition and flow solution condition) and microbiological simulation tests, are simulated. The numerical results and the experimental observations are compared and discussed. The influence of properties of cementitious materials (initial porosity, carbonated layer, etc.) and environmental factors (concentration of H2SO4, content of H2S, etc.) are investigated by this model as well. Furthermore, a long term predictionis conducted
8

Volatile Organic Compound (VOC) Emission during Cured-in-Place-Pipe (CIPP) Sewer Pipe Rehabilitation

Bourbour Ajdari, Elena 13 May 2016 (has links)
The maintenance or replacement of deteriorated pipes and culverts is a constant and significant concern for municipalities and transportation agencies in the United States (Donaldson and Wallingford, 2010). Trenchless technologies and especially the Cured-in-place pipe (CIPP) method have become increasingly common ways to preserve infrastructures owing to their feasibility, cost-effectiveness, and fewer social impacts (Jung and Sinha, 2007). Therefore, there is a growing need to understand the direct and indirect effects of pipeline rehabilitation activities on the environment. Nearly all past CIPP studies have focused on its mechanical properties, and its environmental impacts are poorly investigated and documented (Allouche et al. 2012). Sewer pipelines and storm-water culverts are administered by municipalities and transportation agencies who bear the responsibility for rehabilitation and renewal of these infrastructures. In consequence, they rarely allow sampling and research projects in the field due to liability issues. This is a main obstacle to conducting comprehensive, precise, and unbiased research on CIPP environmental impacts and to date, the degree of relevant health effects and related environmental impacts have remained unknown. Numerous building indoor air contamination incidents indicate that work is needed to understand the magnitude of styrene emission from CIPP sanitary sewer repairs. The main goal of this study was to better comprehend Volatile Organic Compounds emission at three CIPP sanitary sewer installation sites in one U.S. city. Results showed that CIPP chemical emissions may be a health risk to workers and nearby building inhabitants. Additional testing and investigations regarding chemical emissions from CIPP should be commissioned to fill in the environmental and public health knowledge gaps. The acute and chronic chemical exposure risks of CIPP chemical steam constituents and styrene to sensitive populations should be further examined. Other goals of this study were to estimate the magnitude of solid waste generated as well as the amount of certain criteria air pollutants and greenhouse gases emitted from onsite heavy equipment for both CIPP and open-cut sites in a U.S city. The results indicated that the amount of open-cut related solid waste, criteria air pollutants, and greenhouse gases were greater than those during CIPP activities. Additional work is needed to quantify pollutant emissions from CIPP and open-cut activities and consider emissions from a cradle-to-grave standpoint.

Page generated in 0.0335 seconds