Spelling suggestions: "subject:"eex hormonebinding globulin"" "subject:"eex hormonbindning globulin""
11 |
Endogenous hormones in the etiology of ovarian and endometrial cancersLukanova, Annekatrin January 2004 (has links)
The main purpose of this thesis was to examine the relationship of pre-diagnostic circulating levels of sex-steroids (androgens and estrogens), sex hormone binding globuline (SHBG), insulin-like growth factor-I (IGF-I), IGF binding proteins (BP) and C-peptide (as a marker of pancreatic insulin secretion) with risk of ovarian and endometrial cancer. Additionally, the interrelationships of body mass index (BMI), sex-steroids, IGF-I and IGFBP-3 were examined. Two case-control studies were nested within 3 prospective cohort studies centered in New York (USA), Umeå (Sweden) and Milan (Italy). The ovarian study included 132 cancer cases. The endometrial study included 166 cancer cases in the IGF-I and C-peptide component and 124 postmenopausal cases in the sex-steroids component. For each case, two controls matching the case for cohort, age, menopausal status and date at recruitment were selected. In total 286 and 315 controls were included in the ovarian and endometrial cancer studies, respectively. Odds ratios (OR) and their 95% confidence intervals (CI) for cancer risk associated with increasing hormone concentrations were estimated by conditional logistic regression. The cross-sectional analysis was based on anthropometric and hormonal data from 620 controls selected for the two nested case-control studies. There was no association of prediagnostic androstenedione, testosterone, DHEAS, SHBG or estrone with ovarian cancer risk in the whole study population or in women who were pre- or postmenopausal at blood donation. In the premenopausal group, risk appeared to increase with increasing androstenedione (OR (95% CI) for the highest tertile: 2.35 (0.81-6.82), p=0.12). There was no association of IGF-I, IGFBP-1, 2, 3 or C-peptide concentrations with risk of ovarian cancer risk in the study group as a whole. In analyses restricted to subjects who had developed ovarian cancer at an early age (<55), circulating IGF-I was directly and strongly associated with risk (OR (95% CI): 4.74 (1.20-18.7), p<0.05 for the highest IGF-I tertile). In the endometrial study, previous observations were confimed that elevated circulating estrogens and androgens and decreased SHBG increase risk of developing endometrial malignancy after menopause. Multivariate ORs (95% CI) for endometrial cancer for quartiles with the highest hormone levels were: 4.13 (1.76-9.72), p<0.001 for estradiol; 3.67 (1.71-7.88), p=0.001 for estrone; 2.15 (1.05-4.40), p<0.04 for androstenedione; 1.74 (0.88-3.46), p=0.06 for testosterone; 2.90 (1.42-5.90), p<0.01 for DHEAS and 0.46 (0.20-1.05), p<0.01 for SHBG. Prediagnostic IGF-I, IGFBP-1, -2 and –3 were not related to risk of endometrial cancer in the whole study population. In postmenopausal women, levels of IGFBP-1 were inversely related to risk with an OR for the highest quartile of 0.36 (0.13-0.95), p<0.05. Endometrial cancer risk increased with increasing levels of C-peptide (p<0.01), up to an OR of 4.40 (1.65-11.7) for the highest quintile after adjustment for BMI and other confounders. The cross-sectional analyses showed that in both pre- and postmenopausal women SHBG decreased with increasing BMI. In the postmenopausal group, estrogens, testosterone and androstenedione increased with BMI, while the association with IGF-I was non-linear, the highest mean IGF-I concentration being observed in women with BMI between 24 and 25. In postmenopausal women, IGF-I was positively related to androgens, inversely correlated with SHBG, and was not correlated with estrogens. In conclusion, elevated pre-diagnostic sex-steroids, IGF-I or C-peptide increase risk of developing ovarian and endometrial cancer. BMI influences the circulating levels of these hormones, especially after menopause.
|
12 |
Epidemiological applications of quantitative serum NMR metabolomics:causal inference from observational studiesWang, Q. (Qin) 10 March 2017 (has links)
Abstract
Cardiovascular diseases are the leading cause of death worldwide and type 2 diabetes is reaching a global epidemic. Epidemiological studies have identified numerous risk factors and pharmacotherapies in relation to these cardiometabolic diseases. However, the detailed molecular mechanisms of these risk factors and drug therapies generally remain incompletely understood. Elucidating the underlying molecular effects would be essential for better understanding of the disease pathogenesis and also for discovering new therapeutic targets. Quantitative serum metabolomics, which allows for simultaneous quantification of multiple circulating metabolic measures, provides a hypothesis-free approach to systematically inspect the metabolic changes in response to endogenous and exogenous stimuli. Metabolomics thus presents a valuable tool to study the detailed molecular effects of disease risk factors and drug therapies. However, current metabolomics studies are mostly conducted in small cross-sectional studies and the causal relations of the risk factors on the metabolic measures are generally unclear, providing limited public health impact. The present thesis serves as a proof-of-concept to illustrate that well-designed observational studies can be used to infer causality. With the exemplars of assessing molecular effects of two risk factors (body mass index and sex hormone-binding globulin) and two drug therapies (statins and oral contraceptives), the thesis demonstrates that an improved causal inference can be achieved in observational studies via the combination of multiple study designs, including cross-sectional, longitudinal and Mendelian randomization analysis. This robust study design approach together with metabolomics data can be also extended to study the molecular effects of other risk factors and drug therapies. With an improved molecular understanding of a wide range of risk factors and therapies, better understanding of disease pathogenesis is ensured. / Tiivistelmä
Sydän- ja verisuonitaudit ovat johtava kuolinsyy maailmassa ja tyypin 2 diabetes on saavuttamassa globaalin epidemian mittasuhteet. Epidemiologiset tutkimukset ovat löytäneet useita riskitekijöitä ja lääkehoitoja edellä mainituille yleisille taudeille. Tyypin 2 diabetekseen ja sydän- ja verisuonitauteihin liittyvät yksityiskohtaiset molekylaariset mekanismit ymmärretään kuitenkin puutteellisesti. Molekylaaristen yksityiskohtien tarkempi ymmärtäminen olisi siten erittäin merkittävää sekä tautiprosessien ymmärtämiseksi että lääkehoitojen kehittämiseksi. Seerumin kvantitatiivinen metabolomiikka mahdollistaa useiden metabolisten suureiden samanaikaisen määrittämisen verenkierrosta ja tarjoaa siten hypoteesittoman lähestymistavan sekä sisäisten että ulkoisten ärsykkeiden aiheuttamien metabolisten muutosten systemaattiseen tutkimukseen. Metabolomiikka on siten arvokas työkalu yksityiskohtaisten molekylaaristen mekanismien tutkimuksessa, olipa kyseessä taudin riskitekijät tai lääkehoito. Metabolomiikkatutkimuksia on kuitenkin pääasiassa tehty pienissä poikittaistutkimuksissa ja riskitekijöihin liittyvien metabolisten suureiden syy- ja seuraussuhteet ovat yleisesti epäselviä, josta johtuen metabolisten suureiden kansanterveydellinen sovellettavuus on ollut heikkoa. Tämä väitöskirja esittelee tutkimuskonseptin hyvin suunniteltujen havaintotutkimuksien soveltamiseksi syy- ja seuraussuhteiden arvioinnissa. Työ sisältää esimerkit kahden riskitekijän (painoindeksi ja sukupuolihormoneja sitova globuliini) ja kahden lääkehoidon (statiinit ja ehkäisypillerit) molekylaaristen vaikutusten kausaalisista tutkimuksista. Tulokset havainnollistavat, että kausaalisten johtopäätösten luotettavuutta voidaan parantaa yhdistämällä useita tutkimusasetelmia, kuten poikittais- ja pitkittäistutkimuksia sekä Mendelististä satunnaistamista. Esitettyjä luotettavia tutkimusasetelmia, yhdessä metabolomiikkadatan kanssa, voidaan laajentaa muiden riskitekijöiden ja lääkehoitojen molekylaaristen vaikutusten tutkimuksiin. Parantunut molekyylitason ymmärrys useista riskitekijöistä ja lääkehoidoista johtaa myös parempaan tautiprosessien ymmärtämiseen.
|
Page generated in 0.103 seconds