Spelling suggestions: "subject:"shadow effects"" "subject:"pshadow effects""
1 |
Shadow effects in open cross-sections : An analysis of steel temperatures with COMSOL Multiphysics, TASEF and EurocodeAndersson, Lucas January 2018 (has links)
Steel is a material commonly used in various constructions such as high-rise buildings, sport arenas, ships etc. Steel is a versatile building material due to its isotropic characteristics, e.g. both high tensile- and compressive strength. This allows steel to be formed into open section profiles which reduces material usage but simultaneously allows the tensile- and compressive stress resistance to be high in directions were loads are applied. Although steel has a high stress resistance its sensitivity to fire is larger than other building materials due to its high thermal conductivity. The strength of the material is reduced at higher temperatures and thereby makes the dimensioning of beams in fire cases vital in fire safety design of structural elements. An aspect to consider when dimensioning open section building elements in steel is the shadow effect. The shadow effect is the result of the open cross-section geometrical shape of beams and columns, e.g. H-profiles. The interior of the profile is screened from thermal radiation caused by fire which makes the characteristics of the thermal exposure different from closed cross-section profiles. A common way to estimate the temperatures of steel after a certain time of fire exposure is to use numerical calculations described in Eurocode. In these calculations the shadow effect is applied as a reduction of the total heat exchange, i.e. both convection and thermal radiation, from the fire exposure. A more realistic approach is to separate these boundary conditions and treat them as independent quantities. Wickström (2001) argues that a void is created within the flanges and that reduction factor thereby only should be applied to the radiative part of the total heat exchange, acting as a reduction of surface emissivity within the profile. This, since the convection is not affected by the shadow effect. Wickströms (2001) suggestion of application has been investigated in this thesis and has showed a better correlation than the approach suggested in Eurocode when compared to experimental tests. Shadow effects calculated on the premises of separated boundary conditions for the total heat exchange has of yet only been investigated in detail with TASEF+-simulations, but these simulations predicts steel temperatures with satisfactory results. It is possible to reproduce a similar setup in the program COMSOL Multiphysics in two-dimensional simulations, and further three-dimensional simulations. This possibility has been investigated in this thesis. COMSOL Multiphysics has proven to be an adequate tool when it comes to simulate fire exposure on slender steel beam with shadow effects considered. Both three- and two-dimensional models produced simulation results correlating well to simulations conducted in TASEF. Additionally, adequate correlations with experimental tests were obtained for COMSOL Multiphysics as well. Further work regarding fire simulations with the utilisation of COMSOL Multiphysics is thereby suggested.
|
2 |
Bone Conduction Transmission and Head‐Shadow Effects for Unilateral Hearing Losses Fit with Transcranial Cic Hearing AidsFagelson, Marc A., Noe, Colleen, Blevins, Jennifer, Murnane, Owen 02 June 2000 (has links)
Bone conduction transmission and head‐shadow effects were determined with transcranial completely‐in‐the‐canal (TCCIC) CROS hearing aids. Five subjects with documented profound unilateral hearing loss and experience with traditional CROS/BICROS fittings (TCROS) were tested with a CIC hearing aid placed in their poorer ear. Peak SPL was measured at the tympanic membrane and ranged from 105–115 dB SPL at 2000 Hz. Pure‐tone crossover thresholds and functional gain tested at frequencies from 250–8000 Hz varied considerably more than the SPL measures. The pure‐tone results indicated that sensitivity in the better ear was moderately associated with functional gain across frequency. Speech recognition was then tested in the sound field in two conditions: direct (noise in the poorer ear, speech in the better ear) and indirect (noise in the better ear, speech in the poorer ear) at S/Ns of −6, 0, +6, +12, and quiet. The TCCIC fittings were more effective than TCROS aids across S/Ns, particularly in the direct condition. In the indirect condition, the two fittings performed similarly. When data were pooled across conditions, the TCCIC aids provided better word recognition than the TCROS aids, particularly for those subjects with greater sensitivity in the better ear.
|
Page generated in 0.0587 seconds