• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Eeffects of Shaking on the Eye and Central Nervous System of Mice and Barbados Green Monkeys

Kim, Jin Han (Patrick) 12 February 2010 (has links)
Shaken baby syndrome is a clinicopathologic syndrome characterized by a triad of findings: subdural hemorrhage, retinal hemorrhage and axonal injury. Although shaking is widely believed to cause the triad, it is not yet entirely clear if shaking without head impact can produce the triad. Initial attempts to test the effect of shaking in mouse pups were unsuccessful as neither controlled continuous vibration nor pulse acceleration caused any of the components of the triad. With no other convenient modeling system available, a pilot study with three adult subhuman primates was conducted. Although a conclusive statement cannot be made, manual shaking did not immediately cause hemorrhagic injuries to the primates’ brains and eyes. Future studies should test for delayed development of axonal injury. In addition, a comparative anatomical study should also be conducted to test the validity of the adult primate as a model system for human infant injuries.
2

The Eeffects of Shaking on the Eye and Central Nervous System of Mice and Barbados Green Monkeys

Kim, Jin Han (Patrick) 12 February 2010 (has links)
Shaken baby syndrome is a clinicopathologic syndrome characterized by a triad of findings: subdural hemorrhage, retinal hemorrhage and axonal injury. Although shaking is widely believed to cause the triad, it is not yet entirely clear if shaking without head impact can produce the triad. Initial attempts to test the effect of shaking in mouse pups were unsuccessful as neither controlled continuous vibration nor pulse acceleration caused any of the components of the triad. With no other convenient modeling system available, a pilot study with three adult subhuman primates was conducted. Although a conclusive statement cannot be made, manual shaking did not immediately cause hemorrhagic injuries to the primates’ brains and eyes. Future studies should test for delayed development of axonal injury. In addition, a comparative anatomical study should also be conducted to test the validity of the adult primate as a model system for human infant injuries.

Page generated in 0.0695 seconds