Spelling suggestions: "subject:"shallow burial"" "subject:"hallow burial""
1 |
The impact of shallow burial on differential decomposition to the bodySchotsmans, Eline M.J., Van de Voorde, W., De Winne, J., Wilson, Andrew S. January 2010 (has links)
No / Extant literature contains a number of specific case studies on differential decomposition involving adipocere formation or desiccation, but few describe the co-occurrence of these features within a temperate climate. The case of a 65-year-old male, partially buried in a shallow grave for 7 months, is presented in which the soft tissues of the body were outwardly well preserved. The right leg was desiccated, some parts of the body were covered with adipocere (head, neck, right shoulder, upper torso and left leg) and other parts could be classified as in the early stages of decomposition. In this study the taphonomic variables resulting in differential decomposition with desiccation and adipocere formation are discussed.
|
2 |
BEHAVIOUR AND DESIGN OF REINFORCED CONCRETE PIPESMacDougall, Katrina 24 June 2014 (has links)
The overall objectives of this thesis are to determine if Indirect and Direct Design methods currently used for reinforced concrete pipe are able to accurately predict the capacity of the pipe, to identify discrepancies between the two methods, and to provide potential modifications to the methods to reduce inconsistencies. As part of this investigation, two 0.6 m pipes (nominal strength classes 100-D and a 140-D) and two 1.2 m pipes (a 65-D with Wall B and a 65-D with Wall C) were tested under single wheel pair loading at burial depths of 1.2, 0.6 and 0.3 m. The test pipes did not crack at the applied service load of 110 kN and did not pass the crack width limit until between 2.5 and 4 times the service load. A 0.6 m 100-D pipe was also tested under simulated deep burial and it was found that the calculated test D-Load is 1.9 times greater than the designated D-Load of the test pipe. It was found that both methods were conservative and that the Direct Design method should be modified to more closely align with the Indirect Design. An investigation of the Direct Design parameters found that by considering thick ring theory and the Modified Compression Field Theory with two layers of reinforcement, the required amount of steel from Direct Design could be made to align very closely with the Indirect Design. An additional test was completed to further assess the Direct Design method on a 0.6 m 140-D pipe to measure the pressure around the circumference of the pipe and compare this measured pressure to the commonly used pressure distribution for Direct Design. The results show that at the minimum cover (0.3 m) the test pressure is higher than predicted at the crown, lower than predicted at the invert, and nearly zero at the shoulder, springline, and haunch, which is inconsistent with most of the predicted results at these locations. / Thesis (Master, Civil Engineering) -- Queen's University, 2014-06-20 16:29:39.037
|
3 |
Tertiary limestones and sedimentary dykes on Chatham Islands, southwest Pacific Ocean, New ZealandTitjen, Jeremy Quentin January 2007 (has links)
The Chatham Islands are located in the SW Pacific Ocean, approximately 850 km to the east of the South Island of New Zealand. This small group of islands is situated near the eastern margin of the Chatham Rise, an elongated section of submerged continental crust that represents part of the Late Paleozoic-Mesozoic Gondwana accretionary margin. The location and much of the geology of the Chatham Islands are attributed to intra-plate basaltic volcanism, initiated during the Late Cretaceous, in association with development of a failed rifting system to the south of the Chatham Rise. Despite the volcanic nature of much of the geology, the majority of the Cenozoic sedimentary stratigraphic record on the islands comprises non-tropical skeletal carbonate deposits whose deposition was often coeval with submarine volcanics and volcaniclastic deposits. This has resulted in complex stratigraphic relationships, with the volcanic geology exerting a strong influence on the geometry and distribution of the carbonate deposits. These limestones, despite some general field descriptions, have been little studied and are especially poorly understood from a petrographic and diagenetic perspective. The carbonate geology in detail comprises eleven discrete limestone units of Late Cretaceous through to Pleistocene age which were studied during two consecutive field expeditions over the summers of 2005 and 2006. These limestone occurrences are best exposed in scattered coastal outcrops where they form prominent rugged bluffs. While many of the younger (Oligocene to Pliocene) outcrops comprise of poorly exposed, thin and eroded limestone remnants (it;5 m thick), older (Late Paleocene to Early Oligocene) exposures can be up to 100 m in thickness. The character of these limestones is highly variable. In outcrop they display a broad range of textures and skeletal compositions, often exhibit cross-bedding, display differing degrees of porosity occlusion by cementation, and may include rare silicified horizons and evidence of hardground formation. Petrographically the limestones are skeletal grainstones and packstones with a typical compositional makeup of about 70% skeletal material, 10% siliciclasts, and 20% cement/matrix. Localised increases in siliciclastics occur where the carbonates are diluted by locally-derived volcaniclastics. The spectrum of skeletal assemblages identified within the Chatham Island limestones is diverse and appears in many cases to be comparable to the bryozoan dominant types common in mainland New Zealand and mid-latitude Australian cool-water carbonates in general. However, some key departures from the expected cool-water carbonate skeletal makeup have been identified in this study. The occurrence of stromatolitic algal mats in Late Cretaceous and Early Eocene carbonate deposits indicates not cool-temperate, but certainly warm-temperate paleoclimatic conditions. A change to cool-temperate conditions is recorded in the limestone flora/fauna from the mid-Late Miocene times following the development and later northward movement of the Subtropical Front. An uncharacteristic mix of shallow-shelf (bryozoans) and deeper water fauna (planktic foraminifera), together with their highly fragmented and abraded nature, is indicative of the likely remobilisation and redistribution of carbonate, primarily during episodic storm events. The Chatham Islands limestones formed within the relative tectonic stability of an oceanic island setting, which was conducive to ongoing carbonate accumulation throughout much of the Cenozoic. This contrasts markedly with other mainland New Zealand shelf carbonates which formed over sporadic and short-lived geological periods, experiencing greater degrees of burial cementation controlled by a relatively more active tectonic setting. As a consequence of the tectonically stable setting, the Chatham Islands limestones have experienced little burial and exhibit a paucity of burial cementation effects. They remain commonly soft and friable. Detailed petrographic investigations have shown the limestones are variably cemented by rare uneven acicular spar fringes, poorly to well-developed syntaxial rim cements about echinoderm fragments, and equant/blocky microsparite. Staining of thin sections and cathodoluminescence petrography show these spar cement generations are non-ferroan and their very dull- to non-luminescent nature supports precipitation from Mn-poor oxygenated waters, likely of an either meteoric or combined marine/shallow burial origin. Micrite is the dominant intra- and inter-particle pore fill and occurs both as a microbioclastic matrix and as precipitated homogenous and/or micropeloidal cement. The rare fringing cements often seen in association with homogenous and/or micropeloidal micrite may be indicative of true early marine (seafloor) cement precipitation and localised hardground development. An interesting feature of the geology of the Chatham Islands is the occurrence of carbonate material within sedimentary dykes. The locations of the dykes are in association with volcanic and volcaniclastic deposits. Similarities between dyke characteristics at Red Bluff on Chatham Island with mainland occurrences from East Coast and Canterbury Basins (North and South Islands, respectively) on mainland New Zealand have been recognised. They show complex structures including sidewall striations, internal flow structures as revealed by grain sorting, and extra-clast inclusions of previous fill lithologies which are characteristic of carbonate injection. This is in contrast to other dykes which are known to be of a passive fill origin. Multiple phases of carbonate sediment injection can be recognised by crosscutting relationships enabling the determination of a parasequence of events. Possible injection mechanisms are most likely associated with sediment overloading or hydrothermal pressurisation associated with emplacement of submarine volcanics. The Chatham Islands provide an exciting example of a geologically unique and complex non-tropical carbonate depositional setting. The production of carbonates is controlled by volcanic and volcaniclastic sediment input with the types of carbonate deposits and water depth variations related to thermal uplift/subsidence in association with global eustatic sealevel and temperature changes associated with development of Southern Ocean water fronts from the Late Cretaceous-Cenozoic. Carbonate deposition on the Chatham Islands is considered to relate to a rather variable and small scale oceanic, high energy, cool-water carbonate ramp setting whose geometry was continually evolving/changing as a consequence of periodic volcanic episodes.
|
Page generated in 0.057 seconds