• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Shape Memory Polymer for Intracranial Aneurysms: An Investigation of Mechanical and Radiographic Properties of a Tantalum-Filled Shape Memory Polymer Composite

Heaton, Brian Craig 09 July 2004 (has links)
An intracranial aneurysm can be a serious, life-threatening condition which may go undetected until the aneurysm ruptures causing hemorrhaging within the brain. The typical treatment method for large aneurysms is by embolization using platinum coils. However, in about 15% of the cases treated by platinum coils, the aneurysm eventually re-opens. The solution to the problem of aneurysm recurrence may be to develop more bio-active materials, including certain polymers, to use as coil implants. In this research, a shape memory polymer (SMP) was investigated as a potential candidate for aneurysm coils. The benefit of a shape memory polymer is that a small diameter fiber can be fed through a micro-catheter and then change its shape into a three-dimensional configuration when heated to body temperature. The SMP was tested to determine its thermo-mechanical properties and the strength of the shape recovery force. In addition, composite specimens containing tantalum filler were produced and tested to determine the mechanical effect of adding this radio-opaque metal. Thermo-mechanical testing showed that the material exhibited a shape recovery force a few degrees above Tg. The effects of the metal filler were small and included depression of Tg and recovery force. SMP coils deployed inside a simulated aneurysm model demonstrated that typical hemodynamic forces would not hinder the shape recovery process. The x-ray absorption capability the tantalum-filled material was characterized using x-ray diffractometry and clinical fluoroscopy. Diffractometry revealed that x-ray absorption increased with tantalum concentration, however, not as the rule of mixtures would predict. Fluoroscopic imaging of the composite coils in a clinical setting verified the radio-opacity of the material.
2

Development and characterization of a shape memory polymer composite actuator for morphing structures / Développement et Caractérisation de composites à géométrie adaptative et à propriété de mémoires de formes

Basit, Abdul 18 December 2012 (has links)
Les polymères à mémoire de forme (SMP) sont des matériaux qui peuvent revenir à leur forme d'origine lorsqu'un stimulus approprié (par exemple de la chaleur) est prévu. Ces polymères sont programmés par cycle de mémoire de forme qui se compose de deux parties: une partie de la programmation qui donne un effet mémoire de forme (SME) à savoir la forme temporaire pour le polymère et la partie de récupération où il revient à sa forme initiale. Les SMP ont une faible rigidité, donc, produisent de grandes déformations récupérables, mais produisent des forces de récupération faibles. Cependant, les composites SMP produisent des forces de récupération plus grandes car ils sont relativement rigide mais ont des souches moins récupérables. En outre, de forts actionneurs à mémoire de forme peuvent être produits si deux effets différents peuvent être combinés dans une structure unique. Une structure déjà active (par exemple des alliages à mémoire de forme) peut être intégré dans SMP. Par conséquent, un fort actionneur couplé peut être obtenu. [...] / Shape memory polymers (SMPs) are the materials which can return to their original shape when a suitable stimulus (e.g. heat) is provided. These polymers are programmed through shape memory cycle that consists of two parts: programming part which gives shape memory effect (SME) i.e. temporary shape to the polymer and the recovery part which return it to its original shape. SMPs have low stiffness, therefore, produce large recoverable strains, but produce low recovery forces. However, SMP composites produce larger recovery forces as they are relatively rigid but have less recoverable strains. Moreover, strong shape memory actuators can be produced if two different effects can be combined in a single structure. An already active structure (e.g shape memory alloys) can be embedded in SMP. Consequently, a strong coupled actuator can be obtained. In this work, the shape memory property of CBCM composite (an active composite that works on bimetallic affect) has been studied. CBCM stands for controlled behavior of composite material. CBCM activeness and its SM property has been coupled together to obtain a strong actuator. SM property has been obtained through thermo-mechanical programming at a temperature higher than glass transition temperature (Tg) of Epoxy resin used for its fabrication. The CBCM actuating properties have been studied through different one-step recoveries (unconstrained, constrained and recovery under load). Moreover, different asymmetrical CBCM composites have been developed by changing the position and orientation of the different layers used. These have been studied for their different actuation properties. Similarly, multi-step recoveries (unconstrained and constrained) have also been performed to show multi step actuation capabilities in CBCM. The actuating properties of CBCM have also been compared with symmetrical composite (SYM) to show the advantage of coupled properties in CBCM. It has been found that CBCM has the ability to give high strain, high recovery forces. Also, it can recover under load and recover to its original position at the temperatures lower than the deforming temperature used in the programming cycle.

Page generated in 0.075 seconds