Spelling suggestions: "subject:"shape descriptors"" "subject:"chape descriptors""
1 |
Multi-Technique Fusion for Shape-Based Image RetrievalEl-Ghazal, Akrem January 2009 (has links)
Content-based image retrieval (CBIR) is still in its early stages, although several attempts have been made to solve or minimize challenges associated with it. CBIR techniques use such visual contents as color, texture, and shape to represent and index images. Of these, shapes contain richer information than color or texture. However, retrieval based on shape contents remains more difficult than that based on color or texture due to the diversity of shapes and the natural occurrence of shape transformations such as deformation, scaling and orientation. This thesis presents an approach for fusing several shape-based image retrieval techniques for the purpose of achieving reliable and accurate retrieval performance. An extensive investigation of notable existing shape descriptors is reported. Two new shape descriptors have been proposed as means to overcome limitations of current shape descriptors. The first descriptor is based on a novel shape signature that includes corner information in order to enhance the performance of shape retrieval techniques that use Fourier descriptors. The second descriptor is based on the curvature of the shape contour. This invariant descriptor takes an unconventional view of the curvature-scale-space map of a contour by treating it as a 2-D binary image. The descriptor is then derived from the 2-D Fourier transform of the 2-D binary image. This technique allows the descriptor to capture the detailed dynamics of the curvature of the shape and enhances the efficiency of the shape-matching process. Several experiments have been conducted in order to compare the proposed descriptors with several notable descriptors. The new descriptors not only speed up the online matching process, but also lead to improved retrieval accuracy. The complexity and variety of the content of real images make it impossible for a particular choice of descriptor to be effective for all types of images. Therefore, a data- fusion formulation based on a team consensus approach is proposed as a means of achieving high accuracy performance. In this approach a select set of retrieval techniques form a team. Members of the team exchange information so as to complement each other’s assessment of a database image candidate as a match to query images. Several experiments have been conducted based on the MPEG-7 contour-shape databases; the results demonstrate that the performance of the proposed fusion scheme is superior to that achieved by any technique individually.
|
2 |
Multi-Technique Fusion for Shape-Based Image RetrievalEl-Ghazal, Akrem January 2009 (has links)
Content-based image retrieval (CBIR) is still in its early stages, although several attempts have been made to solve or minimize challenges associated with it. CBIR techniques use such visual contents as color, texture, and shape to represent and index images. Of these, shapes contain richer information than color or texture. However, retrieval based on shape contents remains more difficult than that based on color or texture due to the diversity of shapes and the natural occurrence of shape transformations such as deformation, scaling and orientation. This thesis presents an approach for fusing several shape-based image retrieval techniques for the purpose of achieving reliable and accurate retrieval performance. An extensive investigation of notable existing shape descriptors is reported. Two new shape descriptors have been proposed as means to overcome limitations of current shape descriptors. The first descriptor is based on a novel shape signature that includes corner information in order to enhance the performance of shape retrieval techniques that use Fourier descriptors. The second descriptor is based on the curvature of the shape contour. This invariant descriptor takes an unconventional view of the curvature-scale-space map of a contour by treating it as a 2-D binary image. The descriptor is then derived from the 2-D Fourier transform of the 2-D binary image. This technique allows the descriptor to capture the detailed dynamics of the curvature of the shape and enhances the efficiency of the shape-matching process. Several experiments have been conducted in order to compare the proposed descriptors with several notable descriptors. The new descriptors not only speed up the online matching process, but also lead to improved retrieval accuracy. The complexity and variety of the content of real images make it impossible for a particular choice of descriptor to be effective for all types of images. Therefore, a data- fusion formulation based on a team consensus approach is proposed as a means of achieving high accuracy performance. In this approach a select set of retrieval techniques form a team. Members of the team exchange information so as to complement each other’s assessment of a database image candidate as a match to query images. Several experiments have been conducted based on the MPEG-7 contour-shape databases; the results demonstrate that the performance of the proposed fusion scheme is superior to that achieved by any technique individually.
|
3 |
An Algorithm for the Detection of Handguns in Terahertz ImagesLingg, Andrew J. January 2008 (has links)
No description available.
|
4 |
Feature extraction from 3D point clouds / Extração de atributos robustos a partir de nuvens de pontos 3DPrzewodowski Filho, Carlos André Braile 13 March 2018 (has links)
Computer vision is a research field in which images are the main object of study. One of its category of problems is shape description. Object classification is one important example of applications using shape descriptors. Usually, these processes were performed on 2D images. With the large-scale development of new technologies and the affordable price of equipment that generates 3D images, computer vision has adapted to this new scenario, expanding the classic 2D methods to 3D. However, it is important to highlight that 2D methods are mostly dependent on the variation of illumination and color, while 3D sensors provide depth, structure/3D shape and topological information beyond color. Thus, different methods of shape descriptors and robust attributes extraction were studied, from which new attribute extraction methods have been proposed and described based on 3D data. The results obtained from well known public datasets have demonstrated their efficiency and that they compete with other state-of-the-art methods in this area: the RPHSD (a method proposed in this dissertation), achieved 85:4% of accuracy on the University of Washington RGB-D dataset, being the second best accuracy on this dataset; the COMSD (another proposed method) has achieved 82:3% of accuracy, standing at the seventh position in the rank; and the CNSD (another proposed method) at the ninth position. Also, the RPHSD and COMSD methods have relatively small processing complexity, so they achieve high accuracy with low computing time. / Visão computacional é uma área de pesquisa em que as imagens são o principal objeto de estudo. Um dos problemas abordados é o da descrição de formatos (em inglês, shapes). Classificação de objetos é um importante exemplo de aplicação que usa descritores de shapes. Classicamente, esses processos eram realizados em imagens 2D. Com o desenvolvimento em larga escala de novas tecnologias e o barateamento dos equipamentos que geram imagens 3D, a visão computacional se adaptou para este novo cenário, expandindo os métodos 2D clássicos para 3D. Entretanto, estes métodos são, majoritariamente, dependentes da variação de iluminação e de cor, enquanto os sensores 3D fornecem informações de profundidade, shape 3D e topologia, além da cor. Assim, foram estudados diferentes métodos de classificação de objetos e extração de atributos robustos, onde a partir destes são propostos e descritos novos métodos de extração de atributos a partir de dados 3D. Os resultados obtidos utilizando bases de dados 3D públicas conhecidas demonstraram a eficiência dos métodos propóstos e que os mesmos competem com outros métodos no estado-da-arte: o RPHSD (um dos métodos propostos) atingiu 85:4% de acurácia, sendo a segunda maior acurácia neste banco de dados; o COMSD (outro método proposto) atingiu 82:3% de acurácia, se posicionando na sétima posição do ranking; e o CNSD (outro método proposto) em nono lugar. Além disso, os métodos RPHSD têm uma complexidade de processamento relativamente baixa. Assim, eles atingem uma alta acurácia com um pequeno tempo de processamento.
|
5 |
Shape Descriptors Based On Intersection Consistency And Global Binary PatternsSivri, Erdal 01 September 2012 (has links) (PDF)
Shape description is an important problem in computer vision because most vision tasks that require comparing or matching visual entities rely on shape descriptors. In this thesis, two novel shape descriptors are proposed, namely Intersection Consistency Histogram (ICH) and Global Binary Patterns (GBP). The former is based on a local regularity measure called Intersection Consistency (IC), which determines whether edge pixels in an image patch point towards the center or not. The second method, called Global Binary Patterns, represents the shape in binary along horizontal, vertical, diagonal or principal directions. These two methods are extensively analyzed on several databases, and retrieval and running time performances are presented. Moreover, these methods are compared with methods such as Shape Context, Histograms of Oriented Gradients, Local Binary Patterns and Fourier Descriptors. We report that our descriptors perform comparable to these methods.
|
6 |
Correlation between Corneal Radius of Curvature and Corneal EccentricityFredin, Patrik January 2013 (has links)
Aim: The primary aim of this study was to find if there is any correlation between the corneal radius of curvature and its eccentricity. Method: 45 subjects participated in this study, 24 emmetropes, 18 myopes and three hyperopes. All subjects were free of ocular abnormalities and had no media opacities. All the subjects had normal ocular health and good visual acuity of 1.0 or better for both distance and near. The values for eccentricity and corneal radius of curvature were obtained by using a Topcon CA-100F Corneal Analyzer. Results: For the 4.5 mm zone the only significant correlation between corneal radius of curvature and eccentricity was obtained for the mean of the meridian (p = 0.007). On the other hand, we found no significant correlation for the average of two meridians or for meridian 1 and meridian 2 separately in the 8.0 mm zone. Conclusions: We found no correlation between the corneal radius of curvature and the eccentricity for both zones. In addition, no correlation could be found between the spherical equivalent of the refractive errors and the corneal eccentricity. The reason for not finding any significant correlation between the two entities could be due to factors such as smaller sample size and poor distribution of refractive errors in the sample. Moreover, there may be other factors that could influence the overall corneal shape like eye shape, axial length and corneal diameter, which was not evaluated in this study.
|
7 |
Reconhecimento de padrões em imagens por descritores de forma / Pattern recognition in images via shape descriptorsErpen, Luis Renato Cruz January 2004 (has links)
A idéia de capacitar uma máquina a reconhecer o ambiente em que atua tem motivado pesquisadores a investir esforços no estudo do mais complexo dos sentidos humanos, a visão. A visão é, antes de tudo, uma tarefa de representação e processamento de informações, sendo portanto adequada ao tratamento computacional. Visto que ainda não se possuem métodos que tenham resultados equivalentes ao que seria obtido com um usuário humano, tem-se estudado intensamente a utilização de feições para um melhor aproveitamento de seu potencial. Dentre estas feições, a forma de um objeto proporciona um poderoso indício de sua identidade e funcionalidade, podendo ser utilizada para seu reconhecimento. Isso distingue a forma de outras feições visuais elementares, como a cor, o movimento ou a textura, que, apesar de igualmente importantes, normalmente não revelam a identidade de um objeto. Assim sendo, a possibilidade de avaliar a robustez e a estabilidade de técnicas alternativas para a representação de forma é vital para prever o desempenho de cada técnica na presença de alguma incerteza ou discrepância. Neste trabalho, alguns descritores de forma descritos na literatura foram implementados e utilizados em estudos de caso para avaliar sua eficácia. Estes estudos de caso foram realizados utilizando-se caracteres, todavia, com finalidades bastante distintas. O primeiro estudo de caso é voltado para aplicações como a robótica móvel, com reconhecimento de comandos localizados no ambiente por parte do robô. Já o estudo de caso principal está direcionado para aplicações de reconhecimento de placas de automóveis, que poderia tanto ser utilizado para monitoramento e controle do fluxo de trânsito, quanto para controle de infrações. Muitas aplicações, incluindo aquelas que envolvem a recuperação e indexação de objetos visuais, são apropriadas para a utilização de feições de forma. Outra característica importante do presente trabalho é a de realçar que a seleção de um bom descritor reduz o esforço necessário na etapa de classificação, o qual é computacionalmente elevado. / The idea of enabling a machine to recognize the environment with which it interacts has motivated researchers to dedicate efforts in studying the most complex of the human senses: vision. Vision is essentially a task of information representation and processing, what makes it suitable for computational treatment. Given that currently there are no methods that perform equivalently to humans, the use of features has been intensively studied in order to improve the performance of the existing methods. Among these features, the shape of an object provides a powerful sign of its identity and functionality, what enables the exploitation of this feature with the purpose of recognition. This evidence distinguishes shape from other visual features, such as color, motion or texture, which, although equally important, normally do not reveal the identity of an object. As a result, the possibility of evaluating the robustness and stability of alternate techniques for shape representation is essential in order to measure the performance of each technique in the presence of uncertainty. In this work, some shape descriptors available in the literature were implemented and used in case studies aiming at evaluating their effectiveness. These case studies were carried out using characters, although, with very different purposes. The first case study is geared towards applications such as mobile robotics, where the robot recognizes commands available in the environment. The main case study is focused on applications of license plate recognition, which could be used both in situations of surveillance and traffic control and in situations of infraction. Many applications, including those that involve the search and indexing of visual objects, are suited for the use of shape features. Another important characteristic of this work is that it emphasizes that the selection of a good shape description reduces the effort during the classification step, which is computationally elevated.
|
8 |
Reconhecimento de padrões em imagens por descritores de forma / Pattern recognition in images via shape descriptorsErpen, Luis Renato Cruz January 2004 (has links)
A idéia de capacitar uma máquina a reconhecer o ambiente em que atua tem motivado pesquisadores a investir esforços no estudo do mais complexo dos sentidos humanos, a visão. A visão é, antes de tudo, uma tarefa de representação e processamento de informações, sendo portanto adequada ao tratamento computacional. Visto que ainda não se possuem métodos que tenham resultados equivalentes ao que seria obtido com um usuário humano, tem-se estudado intensamente a utilização de feições para um melhor aproveitamento de seu potencial. Dentre estas feições, a forma de um objeto proporciona um poderoso indício de sua identidade e funcionalidade, podendo ser utilizada para seu reconhecimento. Isso distingue a forma de outras feições visuais elementares, como a cor, o movimento ou a textura, que, apesar de igualmente importantes, normalmente não revelam a identidade de um objeto. Assim sendo, a possibilidade de avaliar a robustez e a estabilidade de técnicas alternativas para a representação de forma é vital para prever o desempenho de cada técnica na presença de alguma incerteza ou discrepância. Neste trabalho, alguns descritores de forma descritos na literatura foram implementados e utilizados em estudos de caso para avaliar sua eficácia. Estes estudos de caso foram realizados utilizando-se caracteres, todavia, com finalidades bastante distintas. O primeiro estudo de caso é voltado para aplicações como a robótica móvel, com reconhecimento de comandos localizados no ambiente por parte do robô. Já o estudo de caso principal está direcionado para aplicações de reconhecimento de placas de automóveis, que poderia tanto ser utilizado para monitoramento e controle do fluxo de trânsito, quanto para controle de infrações. Muitas aplicações, incluindo aquelas que envolvem a recuperação e indexação de objetos visuais, são apropriadas para a utilização de feições de forma. Outra característica importante do presente trabalho é a de realçar que a seleção de um bom descritor reduz o esforço necessário na etapa de classificação, o qual é computacionalmente elevado. / The idea of enabling a machine to recognize the environment with which it interacts has motivated researchers to dedicate efforts in studying the most complex of the human senses: vision. Vision is essentially a task of information representation and processing, what makes it suitable for computational treatment. Given that currently there are no methods that perform equivalently to humans, the use of features has been intensively studied in order to improve the performance of the existing methods. Among these features, the shape of an object provides a powerful sign of its identity and functionality, what enables the exploitation of this feature with the purpose of recognition. This evidence distinguishes shape from other visual features, such as color, motion or texture, which, although equally important, normally do not reveal the identity of an object. As a result, the possibility of evaluating the robustness and stability of alternate techniques for shape representation is essential in order to measure the performance of each technique in the presence of uncertainty. In this work, some shape descriptors available in the literature were implemented and used in case studies aiming at evaluating their effectiveness. These case studies were carried out using characters, although, with very different purposes. The first case study is geared towards applications such as mobile robotics, where the robot recognizes commands available in the environment. The main case study is focused on applications of license plate recognition, which could be used both in situations of surveillance and traffic control and in situations of infraction. Many applications, including those that involve the search and indexing of visual objects, are suited for the use of shape features. Another important characteristic of this work is that it emphasizes that the selection of a good shape description reduces the effort during the classification step, which is computationally elevated.
|
9 |
Feature extraction from 3D point clouds / Extração de atributos robustos a partir de nuvens de pontos 3DCarlos André Braile Przewodowski Filho 13 March 2018 (has links)
Computer vision is a research field in which images are the main object of study. One of its category of problems is shape description. Object classification is one important example of applications using shape descriptors. Usually, these processes were performed on 2D images. With the large-scale development of new technologies and the affordable price of equipment that generates 3D images, computer vision has adapted to this new scenario, expanding the classic 2D methods to 3D. However, it is important to highlight that 2D methods are mostly dependent on the variation of illumination and color, while 3D sensors provide depth, structure/3D shape and topological information beyond color. Thus, different methods of shape descriptors and robust attributes extraction were studied, from which new attribute extraction methods have been proposed and described based on 3D data. The results obtained from well known public datasets have demonstrated their efficiency and that they compete with other state-of-the-art methods in this area: the RPHSD (a method proposed in this dissertation), achieved 85:4% of accuracy on the University of Washington RGB-D dataset, being the second best accuracy on this dataset; the COMSD (another proposed method) has achieved 82:3% of accuracy, standing at the seventh position in the rank; and the CNSD (another proposed method) at the ninth position. Also, the RPHSD and COMSD methods have relatively small processing complexity, so they achieve high accuracy with low computing time. / Visão computacional é uma área de pesquisa em que as imagens são o principal objeto de estudo. Um dos problemas abordados é o da descrição de formatos (em inglês, shapes). Classificação de objetos é um importante exemplo de aplicação que usa descritores de shapes. Classicamente, esses processos eram realizados em imagens 2D. Com o desenvolvimento em larga escala de novas tecnologias e o barateamento dos equipamentos que geram imagens 3D, a visão computacional se adaptou para este novo cenário, expandindo os métodos 2D clássicos para 3D. Entretanto, estes métodos são, majoritariamente, dependentes da variação de iluminação e de cor, enquanto os sensores 3D fornecem informações de profundidade, shape 3D e topologia, além da cor. Assim, foram estudados diferentes métodos de classificação de objetos e extração de atributos robustos, onde a partir destes são propostos e descritos novos métodos de extração de atributos a partir de dados 3D. Os resultados obtidos utilizando bases de dados 3D públicas conhecidas demonstraram a eficiência dos métodos propóstos e que os mesmos competem com outros métodos no estado-da-arte: o RPHSD (um dos métodos propostos) atingiu 85:4% de acurácia, sendo a segunda maior acurácia neste banco de dados; o COMSD (outro método proposto) atingiu 82:3% de acurácia, se posicionando na sétima posição do ranking; e o CNSD (outro método proposto) em nono lugar. Além disso, os métodos RPHSD têm uma complexidade de processamento relativamente baixa. Assim, eles atingem uma alta acurácia com um pequeno tempo de processamento.
|
10 |
Reconhecimento de padrões em imagens por descritores de forma / Pattern recognition in images via shape descriptorsErpen, Luis Renato Cruz January 2004 (has links)
A idéia de capacitar uma máquina a reconhecer o ambiente em que atua tem motivado pesquisadores a investir esforços no estudo do mais complexo dos sentidos humanos, a visão. A visão é, antes de tudo, uma tarefa de representação e processamento de informações, sendo portanto adequada ao tratamento computacional. Visto que ainda não se possuem métodos que tenham resultados equivalentes ao que seria obtido com um usuário humano, tem-se estudado intensamente a utilização de feições para um melhor aproveitamento de seu potencial. Dentre estas feições, a forma de um objeto proporciona um poderoso indício de sua identidade e funcionalidade, podendo ser utilizada para seu reconhecimento. Isso distingue a forma de outras feições visuais elementares, como a cor, o movimento ou a textura, que, apesar de igualmente importantes, normalmente não revelam a identidade de um objeto. Assim sendo, a possibilidade de avaliar a robustez e a estabilidade de técnicas alternativas para a representação de forma é vital para prever o desempenho de cada técnica na presença de alguma incerteza ou discrepância. Neste trabalho, alguns descritores de forma descritos na literatura foram implementados e utilizados em estudos de caso para avaliar sua eficácia. Estes estudos de caso foram realizados utilizando-se caracteres, todavia, com finalidades bastante distintas. O primeiro estudo de caso é voltado para aplicações como a robótica móvel, com reconhecimento de comandos localizados no ambiente por parte do robô. Já o estudo de caso principal está direcionado para aplicações de reconhecimento de placas de automóveis, que poderia tanto ser utilizado para monitoramento e controle do fluxo de trânsito, quanto para controle de infrações. Muitas aplicações, incluindo aquelas que envolvem a recuperação e indexação de objetos visuais, são apropriadas para a utilização de feições de forma. Outra característica importante do presente trabalho é a de realçar que a seleção de um bom descritor reduz o esforço necessário na etapa de classificação, o qual é computacionalmente elevado. / The idea of enabling a machine to recognize the environment with which it interacts has motivated researchers to dedicate efforts in studying the most complex of the human senses: vision. Vision is essentially a task of information representation and processing, what makes it suitable for computational treatment. Given that currently there are no methods that perform equivalently to humans, the use of features has been intensively studied in order to improve the performance of the existing methods. Among these features, the shape of an object provides a powerful sign of its identity and functionality, what enables the exploitation of this feature with the purpose of recognition. This evidence distinguishes shape from other visual features, such as color, motion or texture, which, although equally important, normally do not reveal the identity of an object. As a result, the possibility of evaluating the robustness and stability of alternate techniques for shape representation is essential in order to measure the performance of each technique in the presence of uncertainty. In this work, some shape descriptors available in the literature were implemented and used in case studies aiming at evaluating their effectiveness. These case studies were carried out using characters, although, with very different purposes. The first case study is geared towards applications such as mobile robotics, where the robot recognizes commands available in the environment. The main case study is focused on applications of license plate recognition, which could be used both in situations of surveillance and traffic control and in situations of infraction. Many applications, including those that involve the search and indexing of visual objects, are suited for the use of shape features. Another important characteristic of this work is that it emphasizes that the selection of a good shape description reduces the effort during the classification step, which is computationally elevated.
|
Page generated in 0.1219 seconds