Spelling suggestions: "subject:"eshaped role"" "subject:"eshaped hole""
1 |
A Detailed Study of Fan-Shaped Film-Cooling for a Nozzle Guide Vane for an Industrial Gas TurbineColban, William F. IV 04 December 2005 (has links)
The goal of a gas turbine engine designer is to reduce the amount of coolant used to cool the critical turbine surfaces, while at the same time extracting more benefit from the coolant flow that is used. Fan-shaped holes offer this opportunity, reducing the normal jet momentum and spreading the coolant in the lateral direction providing better surface coverage. The main drawback of fan-shaped cooling holes is the added manufacturing cost from the need for electrical discharge machining instead of the laser drilling used for cylindrical holes.
This research focused on examining the performance of fan-shaped holes on two critical turbine surfaces; the vane and endwall. This research was the first to offer a complete characterization of film-cooling on a turbine vane surface, both in single and multiple row configurations. Infrared thermography was used to measure adiabatic wall temperatures, and a unique rigorous image transformation routine was developed to unwrap the surface images.
Film-cooling computations were also done comparing the performance of two popular turbulence models, the RNG-kε and the v2-f model, in predicting film-cooling effectiveness. Results showed that the RNG-kε offered the closest prediction in terms of averaged effectiveness along the vane surface. The v2-f model more accurately predicted the separated flow at the leading edge and on the suction side, but did not predict the lateral jet spreading well, which led to an over-prediction in film-cooling effectiveness.
The intent for the endwall surface was to directly compare the cooling and aerodynamic performance of cylindrical holes to fan-shaped holes. This was the first direct comparison of the two geometries on the endwall. The effect of upstream injection and elevated inlet freestream turbulence was also investigated for both hole geometries. Results indicated that fan-shaped film-cooling holes provided an increase in film-cooling effectiveness of 75% on average above cylindrical film-cooling holes, while at the same time producing less total pressure losses through the passage. The effect of upstream injection was to saturate the near wall flow with coolant, increasing effectiveness levels in the downstream passage, while high freestream turbulence generally lowered effectiveness levels on the endwall. / Ph. D.
|
2 |
Study Of Film Cooling Effectiveness: Conical, Trenched And Asymmetrical Shaped HolesZuniga, Humberto 01 January 2009 (has links)
Film cooling is a technique whereby air from the compressor stage of a gas turbine engine is diverted for cooling purposes to parts, such as the turbine stage, that operate at very high temperatures. Cooling arrangements include impingement jets, finned, ribbed and turbulated channels, and rows of film cooling holes, all of which over the years have become progressively more complex. This costly, but necessary complexity is a result of the industry's push to run engines at increasingly higher turbine inlet temperatures. Higher temperatures mean higher efficiency, but they also mean that the turbine first stage operates hundreds of degrees Kelvin above the melting point of the metal core of the vanes and blades. Existing cooling technology and materials make it possible to protect these parts and allow them to function for extended periods of time--but this comes at a price: the compressed air that is used for cooling represents a considerable penalty in overall turbine efficiency. The aim of current cooling research is threefold: to improve the protection of components from extreme fluxes in order to extend the life of the parts; to increase the inlet turbine operating temperature; and to reduce the amount of air that is diverted from the compressor for cooling. Current film cooling schemes consist of forcing air through carefully machined holes on a part and ejecting it at an angle with the intent of cooling that part by blanketing the surface downstream of the point of ejection. The last major development in the field has been the use of expanded hole exits, which reduce coolant momentum and allow for greater surface coverage. Researchers and designers are continuously looking for novel geometries and arrangements that would increase the level of protection or maintain it while using less coolant. It was found that the performance of fan-shaped holes inside trenches is actually diminished by the presence of the trench. It is obvious, since the fan diffuses the flow, reducing the momentum of the coolant; the addition of the trench further slows the flow down. This, in turn, leads to the quicker ingestion of the main flow by the jets resulting in lower effectiveness. The next part of the study consisted of systematically increasing the depth of the trench for the fan-shaped holes. The purpose of this was to quantify the effect of the trench on the film cooling effectiveness. It was found that the presence of the trench significantly reduces the film effectiveness, especially for the deeper cases. At the higher blowing ratios, the overall performance of the fans collapses to the same value signifying insensitivity to the blowing ratio. A recent study suggests that having a compound angle could reduce the protective effect of the film due to the elevated interaction between the non-co-flowing coolant jet and the mainstream. Although it has been suggested that a non-symmetric lateral diffusion could mitigate the ill effects of having a compound angle, little has been understood on the effect this non-symmetry has on film cooling effectiveness. The last part of this study investigates the effect of non-symmetric lateral diffusion on film cooling effectiveness by systematically varying one side of a fan-shaped hole. For this part of the study, one of the lateral angles of diffusion of a fan-shaped hole was changed from 5° to 13°, while the other side was kept at 7°. It was found that a lower angle of diffusion hurts performance, while a larger diffusion angle improves it. However, the more significant result was that the jet seemed to be slightly turning. This dissertation investigates such novel methods which one day may include combinations of cylindrical and fan-shaped holes embedded inside trenches, conical holes, or even rows of asymmetric fan-shaped holes. The review of current literature reveals that very few investigations have been done on film cooling effectiveness for uniformly diffusing conical holes. They have been treated as a sort of side novelty since industrial partners often say they are hard to manufacture. To extend our understanding of effectiveness of conical holes, the present study investigates the effect of increasing diffusion angle, as well as the effect of adding a cylindrical entrance length to a conical hole. The measurements were made in the form of film cooling effectiveness and the technique used was temperature sensitive paint. Eight different conical geometries were tested in the form of coupons with rows of holes. The geometry of the holes changed from pure cylindrical holes, a 0° cylindrical baseline, to an 8° pure cone. The coupons were tested in a closed loop wind tunnel at blowing ratios varying from 0.5 to 1.5, and the coolant employed was nitrogen gas. Results indicate that the larger conical holes do, in fact offer appropriate protection and that the holes with the higher expansion angles perform similar to fan-shaped baseline holes, even at the higher blower ratios. The study was also extended to two other plates in which the conical hole was preceded by a cylindrical entry length. The performance of the conical holes improves as a result of the entry length and this is seen at the higher blowing ratios in the form of a delay in the onset of jet detachment. The results of this study show that conical expanding holes are a viable geometry and that their manufacturing can be made easier with a cylindrical entry length, at the same time improving the performance of these holes. This suggests that the jets actually have two regions: one region with reduced momentum, ideal for protecting a large area downstream of the point of injection; and another region with more integrity which could withstand more aggressive main flow conditions. A further study should be conducted for this geometry at compound angles with the main flow to test this theory. The studies conducted show that the temperature sensitive paint technique can be used to study the performance of film cooling holes for various geometries. The studies also show the film cooling performance of novel geometries and explain why, in some cases, such new arrangements are desirable, and in others, how they can hurt performance. The studies also point in the direction of further investigations in order to advance cooling technology to more effective applications and reduced coolant consumption, the main goal of applied turbine cooling research. Trench cooling consists of having film cooling holes embedded inside a gap, commonly called a trench. The walls of this gap are commonly vertical with respect to the direction of the main flow and are directly in the path of the coolant. The coolant hits the downstream trench wall which forces it to spread laterally, resulting in more even film coverage downstream than that of regular holes flush with the surface. Recent literature has focused on the effect that trenching has on cylindrical cooling holes only. While the results indicate that trenches are an exciting, promising new geometry derived from the refurbishing process of thermal barrier ceramic coatings, not all the parameters affecting film cooling have been investigated relating to trenched holes. For example, nothing has been said about how far apart holes inside the trench will need to be placed for them to stop interacting. Nothing has been said about shaped holes inside a trench, either. This dissertation explores the extent to which trenching is useful by expanding the PI/D from 4 to 12 for rows of round and fan holes. In addition the effect that trenching has on fan-shaped holes is studied by systematically increasing the trench depth. Values of local, laterally-averaged and spatially-averaged film cooling effectiveness are reported. It is found that placing the cylinders inside the trench and doubling the distance between the holes provides better performance than the cylindrical, non-trenched baseline, especially at the higher blowing ratios, M > 1.0. At these higher coolant flow rates, the regular cylindrical jets show detachment, while those in the trench do not. They, in fact perform very well. The importance of this finding implies that the number of holes, and coolant, can be cut in half while still improving performance over regular holes. The trenched cylindrical holes did not, however, perform like the fan shaped holes.
|
3 |
Performance of a Showerhead and Shaped Hole Film Cooled Vane at High Freestream Turbulence and Transonic ConditionsNewman, Andrew Samuel 04 June 2010 (has links)
An experimental study was performed to measure surface Nusselt number and film cooling effectiveness on a film cooled first stage nozzle guide vane using a transient thin film gauge (TFG) technique. The information presented attempts to further characterize the performance of shaped hole film cooling by taking measurements on a row of shaped holes downstream of leading edge showerhead injection on both the pressure and suction surfaces (hereafter PS and SS) of a 1st stage NGV. Tests were performed at engine representative Mach and Reynolds numbers and high inlet turbulence intensity and large length scale at the Virginia Tech Transonic Cascade facility. Three exit Mach/Reynolds number conditions were tested: 1.0/1,400,000; 0.85/1,150,000; and 0.60/850,000 where Reynolds number is based on exit conditions and vane chord. At Mach/Reynolds numbers of 1.0/1,450,000 and 0.85/1,150,000 three blowing ratio conditions were tested: BR = 1.0, 1.5, and 2.0. At a Mach/Reynolds number of 0.60/850,000, two blowing ratio conditions were tested: BR = 1.5 and 2.0. All tests were performed at inlet turbulence intensity of 12% and length scale normalized by leading edge diameter of 0.28. Film cooling effectiveness and heat transfer results compared well with previously published data, showing a marked effectiveness improvement (up to 2.5x) over the showerhead only NGV and agreement with published showerhead-shaped hole data. NHFR was shown to increase substantially (average 2.6x increase) with the addition of shaped holes, with only a small increase (average 1.6x increase) in required coolant mass flow. Heat transfer and effectiveness augmentation with increasing blowing ratio was shown on the pressure side, however the suction side was shown to be less sensitive to changing blowing ratio. Boundary layer transition location was shown to be within a consistent region on the suction side regardless of blowing ratio and exit Mach number. / Master of Science
|
Page generated in 0.056 seconds