Spelling suggestions: "subject:"shapiro's hemma. eng"" "subject:"shapiro's lemma. eng""
1 |
Cohomologia de grupos e invariante algébricos /Santos, Anderson Paião dos. January 2006 (has links)
Orientador: Ermínia de Lourdes Campello Fanti / Banca: Oziride Manzoli Neto / Banca: Maria Gorete Carreira Andrade / Resumo: Para todo grupo G infinito, finitamente gerado, pode-se obter para o invariante algébrico "end", mais precisamente o número de ends e(G), uma fórmula cohomológica 1-dimensional. O principal objetivo deste trabalho é apresentar, sob certas hipóteses, uma fórmula cohomológica 1-dimensional para o invariante algébrico e(G,H), definido por Scott e Houghton, onde H é um subgrupo de G (Teorema de Swarup). Para tanto, o conceito de subconjunto H-quase invariante de G e resultados como a interpretação do grupo de cohomologia H1(G,M) em termos de derivações (à direita), onde M é um ZG-módulo, e o Lema de Shapiro, são resultados imprescindíveis. Algumas relações desses invariantes com ends de espaços são também apresentadas. / Abstract: For all infinite group G, finitely generated, one can obtain for the algebric invariant "end", more precisely the number of ends e(G), a cohomological 1-dimensional formula. The main objective of this work is to present, under certain hypotheses, a cohomological 1-dimensional formula for the algebric invariant e(G,H), defined by Scott and Houghton, where H is a subgroup of G (Swarup's Theorem). In order to do so, the concept of subset H-almost invariant of G and results like the interpretation of the cohomological group H1(G,M) in terms of derivations (to the right), where M is a ZG-module, and the Shapiro's Lemma, are fundamental results. Some relations of these invariants with space ends are also presented. / Mestre
|
Page generated in 0.0428 seconds