• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 115
  • 25
  • 11
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 204
  • 204
  • 49
  • 30
  • 28
  • 24
  • 21
  • 15
  • 15
  • 14
  • 14
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Simulation of single circular cylinder in shear flow

Hsu, Jui-chen 12 August 2008 (has links)
The present study aims to explore dynamical behavior of the fluid-elastic instability of a circular cylinder in shear flow by numerical simulations. The theoretical model comprises two groups of transient conservation equations of mass and momentum and the governing equations are solved numerically with Fluent software to determine the flow property. The analysis presented that there exist both vortex-induced vibration and flow-elastic vibration for single cylinder in sear flow. The numerical results with a Harmonic Model built from Gambit indicate that there is a transverse force acting from high velocity side toward the low velocity side in shear flow. The transverse force make cylinder move periodically and thus go to a vibration. Furthermore, this study appraises the amplitude and orbit of fluid elastic vibration of a circular cylinder in shear flow and shows the effects of the shear velocity slope and damping factor on fluid elastic vibration of the cylinder. Here in the thesis, as the function applied with Fluent of displaying dynamic mesh on-time, the movement and re-mesh of cylinder could be observed. A vibration expansion diagram was presented and the pictures of flow velocity and flow pressure were retrieved from Fluent.
132

Fluidic control of aerodynamic forces and moments on an axisymmetric body

Abramson, Philip S. 17 November 2009 (has links)
The aerodynamic steering forces and moments on a wind tunnel model of an axisymmetric bluff body are altered by induced segmented attachment of the separated flow over an azimuthal Coanda surface. The model is suspended in the wind tunnel by eight thin wires for minimal support interference within the wake. Each wire is instrumented with a miniature strain gage sensor for direct dynamic force measurements. Control is effected by an array of synthetic jet actuators that emanate from narrow, azimuthally-segmented slots, within a backward facing step. The aerodynamic effects are characterized using hot-wire anemometry and PIV measurements. In the first set of experiments, the array of synthetic jets is distributed around the perimeter of the circular tail end which is extended into a Coanda surface. The fluidic actuation results in segmented vectoring of the separated base flow along the rear Coanda surface and induces asymmetric aerodynamic forces and moments that can effect steering during flight. Transitory modulation of the actuation waveform of multiple actuators around the tail leads to the generation of significant dynamic side forces of controlled magnitude and direction with the potential utility for flight stabilization and fast maneuvering. In a second set of experiments the array of the synthetic jets is placed upstream of a mid-body axisymmetric cavity. A single jet induces a quasi-steady, nearly-matched force couple at the upstream and downstream ends of the cavity. Furthermore, transitory activation of multiple jets can be used to control the onset and sequencing of the couple forces and therefore the resultant force and moment.
133

Orientation of fibres in suspensions flowing over a solid surface

Carlsson, Allan January 2007 (has links)
<p>The orientation of fibres suspended in a viscous fluid, flowing over a solid surface, has been studied experimentally. A shear layer was generated, by letting the suspension flow down an inclined plate. Far upstream from the measuring section the suspension was accelerated to obtain an initial orientation of the fibres aligned with the flow direction. A CCD-camera was used to visualise the fibres. The velocity profile of the fibres coincided with the theoretical expression for fully developed flow of Newtonian liquid down an inclined wall.</p><p>The orientation of the fibres was analysed in planes parallel to the solid surface. At distances from the wall larger than one fibre length the fibres performed a tumbling motion in the flow-gradient plane in what appeared to be Jeffery-like orbits. Closer to the wall a difference was found between fibres of aspect ratio <i>r</i><i>p </i>= 10 and 40. The longer fibres of <i>r</i><i>p </i>= 40 kept their orientation, aligned with the flow, also in the near wall region. For the shorter fibres the orientation shifted gradually, to orientations closer to the vorticity axis, when the distance from the wall was decreased. In the very proximity to the wall the fibres were aligned with the vorticity, perpendicular to the direction of the flow. Another distinction, most likely related to the fibre orientation, was seen in the wall normal concentration profile. Due to sedimentation effects fibres accumulated in the near wall region. For fibres of <i>r</i><i>p </i>= 10 a peak in concentration was found at the wall, while for r=40 the maximum concentration was found approximately half a fibre length from the wall. It is previously known that a fibre can interact with the wall in what is referred to as a "pole vaulting" motion away from the wall. It is suggested, as a likely explanation to the location of the maximum concentration, that fibres of <i>r</i><i>p </i>= 40 perform this motion, while fibres of <i>rp</i>=10 do not.</p><p>In another experiment the surface of the wall was modified with ridges. For fibres of <i>r</i><i>p </i>= 10 there were no longer any fibres oriented perpendicular to the flow direction in the near wall region.</p><p>The main application in mind throughout this work is papermaking. The study is considered to be of fundamental character and is not applicable in a direct sense. The difference between the flow situation in the experiments and the paper machine is discussed further.</p>
134

Size and shape effects for the nano/micro particle dynamics in the microcirculation

Lee, Sei Young 07 December 2010 (has links)
The nano/micro particles have been widely used as a carrier of therapeutic and contrast imaging agents. The nano/micro particles have many advantages, such as, specificity, controlled release, multifunctionality and engineerability. By tuning the chemical, physical and geometrical properties, the efficacy of delivery of nano/micro particle can be improved. In this study, by analyzing the effect of physical and geometrical properties of particle, such as, size, shape, material property and flow condition, the optimal condition for particle delivery will be explored. The objectives of this study are (1) to develop predictive mathematical models and (2) experimental models for particle margination and adhesion, and (3) to find optimal particle geometry in terms of size and shape to enhance the efficiency of its delivery. The effect of particle size expressed in terms of Stokes number and shape, namely, spherical, ellipsoidal, hemispherical, discoidal and cylindrical particle on the particle trajectory is investigated. For discoidal and cylindrical particles, the effect of aspect ratio is also considered. To calculate particle trajectory in the linear shear flow near the substrate, Newton's law of motion is decomposed into hydrodynamic drag and resistance induced by particle motion. The drag and resistance is estimated through finite volume formulation using Fluent v6.3. Particle behavior in the linear shear flow does strongly depend on Stokes number. Spherical particle is transported following the streamline in the absence of external body force. However, non-spherical particles could across the streamline and marginate to the substrate. For non-spherical particles, the optimal [Stokes number] in terms of particle margination is observed; [Stokes number almost equal to] 20 for ellipsoidal, hemispherical and discoidal particle; [Stokes number almost equal to] 10 for cylindrical particle. For discoidal particle with [gamma subscript d]=0.2 shows fastest margination to the substrate. The effect of gravitational force is also considered with respect to the fluid direction. When the gravitational force is applied, mostly, gravitational force plays a dominant role for particle margination. However, using small particle aspect ratio ([gamma subscript d]=0.2 and 0.33), spontaneous drift induced by particle-fluid-substrate interaction could overcome gravitational effect in some cases ([Stokes number]=10, G=0.1). In addition the adhesion characteristic of spherical particle has been studied using in vitro micro fluidic chamber system with different particle size and flow condition. The experimental results are compared to the mathematical model developed by Decuzzi and Ferrari (Decuzzi and Ferrari, 2006) and in vivo test (Decuzzi et al., 2010). The optimal particle size for S=75 and 90 is found to be 4-5 [micrometer] through the in vitro non-specific interaction of spherical particle on the biological substrate. The suggested mathematical model has proven to be valid for current experimental condition. At the end, the mathematical model, in vitro flow chamber results and in vivo test have been compared and the scaling law for particle adhesion on the vessel wall has been confirmed. / text
135

Shear flow experiments: Characterizing the onset of turbulence as a phase transition

Avila, Kerstin 05 November 2013 (has links)
No description available.
136

Microstructure Development in Viscoelastic Fluid Systems

Li, Huaping Unknown Date
No description available.
137

Velocity and free surface measurements of free plane jets

Collins, Justin Andrew 12 1900 (has links)
No description available.
138

Subcritical Transition to Turbulence in Shear Flows

Shi, Liang 20 May 2014 (has links)
No description available.
139

A numerical study of the stability of a stratified mixing layer

Collins, David A. January 1982 (has links)
Using a two-dimensional nonlinear numerical simulation of a (viscous) stratified shear layer, strong instabilities resulted from the resonant interaction of a long linearly neutrally stable wave and the corresponding fastest growing wave. This linearly fastest growing wave, with optimal initial conditions, grows initially at a rate five times that predicted by linear theory. With other initial conditions, the linearly fastest growing wave may actually decay. The possibility of this type of interaction is suggested by the weakly nonlinear theory (cf. Maslowe, 1977). This coupled system of fourth order nonl inear partial differential equations was solved using a modified pseudospectral scheme for the spatial variables, incorporating the use of fast Fourier transforms to calculate spatial derivatives, and a second order Adams-Bashforth scheme for the temporal derivatives . / Dans cette etude, en utilisant une simulation numerique nonlineaire a deux dimensions d'une couche stratifiee, decollee et visqueuse, on obtint des resultats interessants a partir des cas correspondant a l'interaction resonnante d'une onde longue a stabilite neutre et d'une onde courte qui croit la plus rapidement selon la theorie lineaire. En utilisant certaines conditions initiales, l'onde courte croit initialement a un taux cinq fois superieur a celui predit par la theorie lineaire. Avec d'autres conditions initiales l'onde courte decroit. La possibilite de ce genre d'interaction est predite par la theorie faiblement nonlineaire (voir Maslowe, 1977). Ce systeme couple aux equations nonlineaires du quatrieme ordre aux derivees partielles, est resolu par une methode pseudo-spectrale modifiee, pour les variables spatiales, et une methode Adams-Bashforth du second ordre pour les derivees temporelles. fr
140

Microstructure Development in Viscoelastic Fluid Systems

Li, Huaping 11 1900 (has links)
This thesis deals with the mechanisms of microstructure development in polymer blends. Much work has been performed on the breakup process of immiscible systems where the dispersed phase is suspended inside another matrix. The fluids used were polymer melts or model viscoelastic fluids, and the processing flows were model shear flow or processing flows seen in industry. It is found that in industrial extruders or batch mixers, the morphology of the dispersed polymer evolves from pellets to films, and subsequently to fibers and particles. In this thesis, it is demonstrated based on force analysis that the in-situ graft reactive compatibilization facilitates breakup of the dispersed phase by suppressing slip at the interface of the dispersed phase and matrix phase. The morphology development of polymer blends in industrial mixers was simulated by performing experiments of model viscoelastic drop deformation and breakup under shear flow. Two distinct modes of drop deformation and breakup were observed. Namely, viscoelastic drops can elongate and breakup either in (1) the flow direction or (2) the vorticity direction. The first normal stress difference N1 plays a decisive role in the conditions and modes of drop breakup. Drop size is an important factor which determines to a great extent the mode of drop breakup and the critical point when the drop breakup mechanism changes. Small drops break along the vorticity direction, whereas large drops break in the flow direction. A dramatic change in the critical shear rate was found when going from one breakup mode to another. Polymer melts processed under shear flow present different morphology development mechanisms: films, fibers, vorticity elongation and surface instability. The mechanisms depend greatly on the rheological properties of both the dispersed and matrix phases, namely the viscosity ratio and elasticity ratio. High viscosity ratio and high elasticity ratio result elongation of the dispersed phase in the vorticity direction. Medium viscosity ratio and low elasticity ratio result in fiber morphology. Low viscosity ratio and high elasticity ratio result in film morphology. The surface instability is caused by the shear-thinning effect of the dispersed polymer. / Chemical Engineering

Page generated in 0.0386 seconds