Spelling suggestions: "subject:"shear waves"" "subject:"shear saves""
21 |
Shear Alfvén waves in tokamaksKieras, Cynthia Elizabeth. January 1982 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1982. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 247-250).
|
22 |
Analytical study of the spectral-analysis-of-surface-waves method at complex geotechnical sitesBertel, Jeffrey D. January 2006 (has links)
Thesis (M.S.) University of Missouri-Columbia, 2006. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 21, 2007) Includes bibliographical references.
|
23 |
Earth's Elastic and Density Structure from Diverse Seismological ObservationsMoulik, Pritwiraj January 2016 (has links)
A large data set comprising normal-mode eigenfrequencies, quality factors and splitting functions, Earth's mass and moment of inertia, surface-wave phase anomalies and dispersion curves, body-wave arrivals and traveltime curves, as well as long-period waveforms is inverted to obtain the distribution of elastic properties, shear attenuation and density in the Earth's interior. We address three fundamental aspects of global seismology by reconciling and modeling data sets with several methodological improvements, such as accounting for radial and azimuthal anisotropy, development of better methods for crustal corrections, and devising novel regularization and parameterization schemes.
In the first contribution, we incorporate normal-mode splitting functions with other seismological data sets to examine the variation of anisotropic shear-wave velocity in the Earth's mantle. Our preferred anisotropic model, S362ANI+M, has strong isotropic velocity anomalies in the transition zone while the anisotropy is restricted to the upper 300~km in the mantle. When radial anisotropy is allowed throughout the mantle, large-scale anisotropic patterns are observed in the lowermost mantle with v_SV > v_SH beneath Africa and South Pacific and v_SH > v_SV beneath several circum-Pacific regions. However, small improvements in fits to the data on adding anisotropy at depth leave the question open on whether large-scale radial anisotropy is required in the transition zone and in the lower mantle. We demonstrate the utility of mode-splitting data in reducing the tradeoffs between even-degree variations of isotropic velocity and anisotropy in the lowermost mantle.
We then devise a methodology to detect seismological signatures of chemical heterogeneity using scaling relationships between shear velocity, density and compressional velocity in the Earth's mantle. Several features reported in earlier tomographic studies persist with the inclusion of new and larger data sets; anti-correlation between bulk-sound and shear velocities in the lowermost mantle as well as an increase in velocity scaling (nu=dlnv_S/dlnv_P) with depth in the lower mantle are found to be robust. Many spheroidal and toroidal modes are largely incompatible with perfect correlations between density and shear-velocity variations in the lowermost mantle. A way to fit concurrently the various data sets is by allowing independent density perturbations in the lowermost mantle. Our preferred joint model consists of denser-than-average anomalies (~1% peak-to-peak) at the base of the mantle roughly coincident with the low-velocity superplumes. The relative variation of shear velocity, density and compressional velocity in this study disfavors a purely thermal contribution to heterogeneity in the lowermost mantle.
In the third contribution, we introduce an approach to construct a 1-D reference model that is consistent with crustal heterogeneities and various asphericities in the Earth's mantle. We demonstrate that the crust contributes substantially to fundamental-mode dispersion curves when the nonlinear effects of its thickness and velocity variations are taken into consideration. We apply appropriate crustal corrections and perform several iterations to converge to our preferred radial model NREM1D, which is anisotropic in the upper mantle and smooth across the 220-km discontinuity for all physical parameters. Radial anisotropy in the shallowest mantle, with a maximum at ~150~km depth, is required to fit global averages of fundamental-mode Rayleigh and Love wave dispersion (25--250s). NREM1D also predicts arrival times of major mantle and core phases in agreement (+/- 0.5s) with a recent isotropic velocity model that was optimized for earthquake location. The new reference Earth model NREM1D introduced here is easily extendable due to its modular construction as a linear combination of radial basis functions and can be used for earthquake location, spherical-earth normal mode calculations, and as a starting model in studies of lateral heterogeneity.
|
24 |
Shear-wave anisotrophy across the Cascadia Subduction Zone from a linear seismograph arrayFabritius, R. Axel 02 May 1995 (has links)
Graduation date: 1995 / Best scan available for figures.
|
25 |
Seismic anisotropy beneath the southern Puna PlateauRobinson, Danielle D., Sandvol, Eric Alan, January 2009 (has links)
The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Title from PDF of title page (University of Missouri--Columbia, viewed on December 30, 2009). Thesis advisor: Dr. Eric Sandvol. Includes bibliographical references.
|
26 |
Experimental and theoretical studies in support of implementing the spectral-analysis-of-surface-wave (SASW) method offshore /Rosenblad, Brent Lyndon, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 293-298). Available also in a digital version from Dissertation Abstracts.
|
27 |
Study of surface wave methods for deep shear wave velocity profiling applied in the upper Mississippi embaymentLi, Jianhua, Rosenblad, Brent L. January 2008 (has links)
Title from PDF of title page (University of Missouri--Columbia, viewed on Feb 25, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Dissertation advisor: Dr. Brent L. Rosenblad. Vita. Includes bibliographical references.
|
28 |
High Frequency Shear Wave Imaging: A Feasibility Study In Tissue Mimicking Gelatin PhantomsMaeva, Anna 18 March 2014 (has links)
Shear wave (SW) imaging is an ultrasound elastogrpahy technique for estimating the elastic properties of biological tissues. Increasing the frequency would improve both the confinement of the radiation force generating the shear wave, and the imaging spatial resolution. The objectives of the study were to realize a simple high frequency (HF) system for the generation and detection of SW propagation and to implement this system to develop and characterize tissue-mimicking gelatin phantoms (TMGP) for HF SWI with elastic properties in the range of those encountered in biological tissue.
A 5 MHz and 10 MHz focused transducer were used to induced SW’s in TMGP ranging from 4% to 12% gelatin with 3% silica for scattering and a 25 MHz single-element focused transducer recorded pulse-echo signals in order to capture the SW. The shear wave speeds in the TMGP were found to range linearly from 1.59-4.59 m/s in the 4% to 12% gelatin samples.
|
29 |
High Frequency Shear Wave Imaging: A Feasibility Study In Tissue Mimicking Gelatin PhantomsMaeva, Anna 18 March 2014 (has links)
Shear wave (SW) imaging is an ultrasound elastogrpahy technique for estimating the elastic properties of biological tissues. Increasing the frequency would improve both the confinement of the radiation force generating the shear wave, and the imaging spatial resolution. The objectives of the study were to realize a simple high frequency (HF) system for the generation and detection of SW propagation and to implement this system to develop and characterize tissue-mimicking gelatin phantoms (TMGP) for HF SWI with elastic properties in the range of those encountered in biological tissue.
A 5 MHz and 10 MHz focused transducer were used to induced SW’s in TMGP ranging from 4% to 12% gelatin with 3% silica for scattering and a 25 MHz single-element focused transducer recorded pulse-echo signals in order to capture the SW. The shear wave speeds in the TMGP were found to range linearly from 1.59-4.59 m/s in the 4% to 12% gelatin samples.
|
30 |
Crustal modification by tectonic events and upper mantle anisotropy beneath the Midcontinent Rift and New Madrid Seismic Zone: insights from receiver function studies and teleseismic shear wave splittingMoidaki, Moikwathai, January 2009 (has links) (PDF)
Thesis (Ph. D.)--Missouri University of Science and Technology, 2009. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 29, 2009) Includes bibliographical references (p. 119-131).
|
Page generated in 0.0443 seconds