• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 11
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Induced microseismicity and the mechanical behaviour of jointed rock during the development of an HDR geothermal reservoir

Jupe, Andrew John January 1990 (has links)
No description available.
2

Propagation, reflection and transmission of plane waves in pre-stressed elastic solids

Hussain, Wasiq January 1999 (has links)
No description available.
3

Static and Free Vibration Analyses of Composite Shells Based on Different Shell Theories

Asadi, Ebrahim 09 December 2011 (has links)
Equations of motion with required boundary conditions for doubly curved deep and thick composite shells are shown using two formulations. The first is based upon the formulation that was presented initially by Rath and Das (1973, J. Sound and Vib.) and followed by Reddy (1984, J. Engng. Mech. ASCE). In this formulation, plate stiffness parameters are used for thick shells, which reduced the equations to those applicable for shallow shells. This formulation is widely used but its accuracy has not been completely tested. The second formulation is based upon that of Qatu (1995, Compos. Press. Vessl. Indust.; 1999, Int. J. Solids Struct.). In this formulation, the stiffness parameters are calculated by using exact integration of the stress resultant equations. In addition, Qatu considered the radius of twist in his formulation. In both formulations, first order polynomials for in-plane displacements in the z-direction are utilized allowing for the inclusion of shear deformation and rotary inertia effects (first order shear deformation theory or FSDT). Also, FSDTQ has been modified in this dissertation using the radii of each laminate instead of using the radii of mid-plane in the moment of inertias and stress resultants equations. Exact static and free vibration solutions for isotropic and symmetric and anti-symmetric cross-ply cylindrical shells for different length-to-thickness and length-to-radius ratios are obtained using the above theories. Finally, the equations of motion are put together with the equations of stress resultants to arrive at a system of seventeen first-order differential equations. These equations are solved numerically with the aid of General Differential Quadrature (GDQ) method for isotropic, cross-ply, angle-ply and general lay-up cylindrical shells with different boundary conditions using the above mentioned theories. Results obtained using all three theories (FSDT, FSDTQ and modified FSDTQ) are compared with the results available in literature and those obtained using a three-dimensional (3D) analysis. The latter (3D) is used here mainly to test the accuracy of the shell theories presented here.
4

The Effects of Shear Deformation on Chondrogenesis

Brabham, Kori Vasser 07 August 2004 (has links)
Due to mechanical loading, cartilage experiences distortional change, volumetric change, and fluid flow. Research has shown cells to be responsive to unconfined compression, a load that produces all three conditions. To isolate the factor(s) responsible for chondrogenesis, the first goal of this research was to design and implement a device for the application of shear deformation to cells. Secondly, using this device, Stage 23/24 chick limb bud cells were suspended in 2% alginate and subjected to 20% shear deformation at 1 Hz. for two hours daily for three days. Gene expression, DNA content, sGAG content, and cartilage nodule formation were determined after eight days in culture and compared to results obtained for non-loaded cells. Results indicated that shear deformation at the applied level did not have a significant effect on chondrogenesis in Stage 23/24 chick limb bud cells, suggesting that this cell type is not extremely sensitive to distortional change.
5

Shear Deformation in Thin Polymer Films as a Probe of Entanglement in Confined Systems

Si, Lun January 2003 (has links)
We present the results of our study of the shear deformation zone in free-standing thin polymer films as a probe of entanglement in confined systems. A stretching system was used to uniaxially strain thin polystyrene (PS) films. Atomic force microscopy was used to measure the thicknesses of the shear deformation zone (SDZ), hc, and the film thicknesses h. The maximum extension ratio 2 - h/hc, was measured as a function of film thickness. The results show that A increases with the decreasing film thickness which implies an increase in the entanglement molecular weight in confinement. The same experiments were carried out for thin PS film with different molecular weights. A tentative model was developed to explain the experimental results and found to be in good agreement with the data. More exciting is the fact that the model predicts a scaling dependence on the polymer molecular weight which was also observed. / Thesis / Master of Applied Science (MASc)
6

Eigenvalue analysis of amorphous solids consisting of frictional grains under athermal quasistatic shear / 非熱的準静的剪断下での摩擦のある粒子からなるアモルファス固体の固有値解析

Ishima, Daisuke 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24397号 / 理博第4896号 / 新制||理||1699(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 早川 尚男, 教授 佐々 真一, 准教授 藤 定義 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
7

Postbuckling Analysis of Functionally Graded Beams

Soncco, K, Jorge, X, Arciniega, R.A. 26 February 2019 (has links)
This paper studies the geometrically non-linear bending behavior of functionally graded beams subjected to buckling loads using the finite element method. The computational model is based on an improved first-order shear deformation theory for beams with five independent variables. The abstract finite element formulation is derived by means of the principle of virtual work. High-order nodal-spectral interpolation functions were utilized to approximate the field variables which minimizes the locking problem. The incremental/iterative solution technique of Newton's type is implemented to solve the nonlinear equations. The model is verified with benchmark problems available in the literature. The objective is to investigate the effect of volume fraction variation in the response of functionally graded beams made of ceramics and metals. As expected, the results show that transverse deflections vary significantly depending on the ceramic and metal combination. / Revisión por pares
8

Nonlinear analysis of smart composite plate and shell structures

Lee, Seung Joon 29 August 2005 (has links)
Theoretical formulations, analytical solutions, and finite element solutions for laminated composite plate and shell structures with smart material laminae are presented in the study. A unified third-order shear deformation theory is formulated and used to study vibration/deflection suppression characteristics of plate and shell structures. The von K??rm??n type geometric nonlinearity is included in the formulation. Third-order shear deformation theory based on Donnell and Sanders nonlinear shell theories is chosen for the shell formulation. The smart material used in this study to achieve damping of transverse deflection is the Terfenol-D magnetostrictive material. A negative velocity feedback control is used to control the structural system with the constant control gain. The Navier solutions of laminated composite plates and shells of rectangular planeform are obtained for the simply supported boundary conditions using the linear theories. Displacement finite element models that account for the geometric nonlinearity and dynamic response are developed. The conforming element which has eight degrees of freedom per node is used to develop the finite element model. Newmark's time integration scheme is used to reduce the ordinary differential equations in time to algebraic equations. Newton-Raphson iteration scheme is used to solve the resulting nonlinear finite element equations. A number of parametric studies are carried out to understand the damping characteristics of laminated composites with embedded smart material layers.
9

Nonlinear analysis of smart composite plate and shell structures

Lee, Seung Joon 29 August 2005 (has links)
Theoretical formulations, analytical solutions, and finite element solutions for laminated composite plate and shell structures with smart material laminae are presented in the study. A unified third-order shear deformation theory is formulated and used to study vibration/deflection suppression characteristics of plate and shell structures. The von K??rm??n type geometric nonlinearity is included in the formulation. Third-order shear deformation theory based on Donnell and Sanders nonlinear shell theories is chosen for the shell formulation. The smart material used in this study to achieve damping of transverse deflection is the Terfenol-D magnetostrictive material. A negative velocity feedback control is used to control the structural system with the constant control gain. The Navier solutions of laminated composite plates and shells of rectangular planeform are obtained for the simply supported boundary conditions using the linear theories. Displacement finite element models that account for the geometric nonlinearity and dynamic response are developed. The conforming element which has eight degrees of freedom per node is used to develop the finite element model. Newmark's time integration scheme is used to reduce the ordinary differential equations in time to algebraic equations. Newton-Raphson iteration scheme is used to solve the resulting nonlinear finite element equations. A number of parametric studies are carried out to understand the damping characteristics of laminated composites with embedded smart material layers.
10

Provėžų, susijusių su šlyties deformacijomis automobilių kelių asfaltbetonio dangose, mažinimas naudojant geosintetines medžiagas / Rutting Associated with Shear Deformations on Asphalt Concrete Road Pavements Reduction by Means of Geosynthetic Materials

Oginskas, Rolandas 26 February 2007 (has links)
The dissertation are analyzing the main characteristics of asphalt concrete influencing shear deformation, appearance and increase of rutting connected with them, analyze the influence of geosynthetic material characteristics onto asphalt concrete functioning.

Page generated in 0.104 seconds