• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The safety and efficacy of intramuscular xylazine for pain relief in sheep and lambs

Grant, Cliff. January 2002 (has links) (PDF)
"April 2002" Bibliography: leaves 190-202. Examines the suitability of the [alpha] 2 adrenoreceptor agonist xylazine for providing safe and effective analgesia in 2 settings: for post-surgical pain in adult sheep used for biomedical research, and for routine husbandry procedures applied to lambs on farms, such as mulesing, tail-docking and castration. Concludes in setting 1 that intramuscular administration of xylazine was simple to perform yet was characterized by a rapid peak analgesic effect with a reasonable duration of action and minimal deleterious effects on cardiac output, blood pressure or arterial blood gases. In setting 2 the anti-nociceptive effects in lambs are of a similar magnitude and duration to those in adult sheep when the dose was scaled for body weight. A ranking of the relative painfulness of husbandry procedures was developed and used to assess the efficacy of intramuscular xylazine.
2

Extraction and biomedical application of peripheral blood stem cells in sheep and horses

Strydom, Aliki Veruschka 12 1900 (has links)
Thesis (PhD (Physiological Sciences))--University of Stellenbosch, 2007. / SUPERFICIAL digital flexor tendon injury has a serious negative impact on the competitive horse industry. Injured horses require up to a year of rest for recovery and likelihood of re-injury upon return to normal activity is as high as 80 %. Tendon healing requires (a) production of collagen by fibroblasts, to provide tensile strength and elasticity to the tendon, (b) minimisation of restrictive fibrosis, which compromises tendon gliding function and (c) minimisation of peritendinous adhesions. We review conventional treatments for tendon healing before exploring stem cell application as a therapeutic alternative. We promote the use of hematopoietic and mesenchymal stem cells derived from adult peripheral blood - as opposed to bone marrow-derived stem cells or embryonic stem cell sources - and review published research output in this regard. In conclusion, we outline our research objectives and present and discuss our results in the chapters that follow. Mononuclear cells - consisting of hematopoietic stem cells, mesenchymal stem cells and leucocytes – were isolated from the peripheral blood of sheep and horses through red blood cell lysis and blood plasma extraction. Cell counts and propidium iodide dye exclusion viability tests were conducted on the cell pellets. Sheep sub samples were tested for CD45 expression and horse sub samples for CD4 and CD11a/18 cell surface markers by flow cytometry for characterisation purposes. In both cases, separate sub samples were incubated with matched immunoglobulin (IgG) isotypes, conjugated to fluorescein isothiocyanate (FITC), to serve as controls. For the culture of mononuclear cells, 4.5 x 106 cells were selected for autologous sheep injections, 3 x 106 CD45- cells for allogeneic sheep injections (the latter excluding leucocytes that may induce an immune response) and 72 x 106 cells for horse injections. These cells were incubated with bromo-deoxyuridine (BrdU), cultured and subsets were extracted for a second round of cell counts and viability tests before being resuspended in blood plasma. For the horse samples an additional 1 x 106 mononuclear cells were incubated until reaching 60 % confluence and tested for myogenic differentiation. Low cell mortality and lack of fluorescence from IgG-FITC controls reflected effective protocols and a lack of false positive results. The fact that the equine cell population differentiated into myotubes verified the presence of mesenchymal stem cells in injections. We tested whether surgical incisions or collagenase injections best mimicked naturally occurring tendon injuries and compiled macroscopic and microscopic descriptions of tendon injury sites at seven weeks post-injury. The superficial digital flexor tendons of 27 sheep received an incision, a collagenase injection or a saline control injection. After one week a number of sheep were sacrificed while the remainder received further saline treatment and were sacrificed after another seven weeks. Tendons were examined through clinical observations, image analysis of maximum tendon diameter, mechanical testing and histological sectioning of affected tissues. Collagenase-induced injury resembled tendonitis more closely than surgically-induced injury. Collagenase-injured tendons (a) induced lengthier lameness in affected limbs, (b) were more swollen and difficult to palpate, (c) assumed the bow appearance characteristic of natural injury, (d) experienced extensive haemorrhage due to collagen lysis, (e) had decreased elasticity and capacity to carry loads and stress, (f) displayed decreased stiffness due to collagen fibre disruption and (g) developed severe inflammation. After seven weeks injured tendons displayed increased vascularisation in the areas of haemorrhage and in the adjacent collagen matrix. High inflammation rates and low collagen levels however still persisted. Collagenase injections were used to induce tendonitis in the superficial digital flexor tendons of 27 sheep. After one week these tendons received treatment with a control saline solution, autologous peripheral blood mononuclear cells (MNCs) or allogeneic peripheral blood CD45- MNCs. Healing rates were compared after a further seven week period by conducting ultrasonographic evaluations, clinical observations, image analyses of maximum tendon diameter, mechanical tests and histological investigations. Tendons treated with MNCs displayed an improvement in echogenicity and fibre linearity, higher and more organised collagen levels, stronger mechanical properties and less swelling. Although these improvements were not always significant, they provided strong evidence to suggest marked healing benefits over a longer time period. Collagenase injections were used to induce tendonitis in the superficial digital flexor tendons of four horses. After one week these tendons received treatment with either a control saline solution or autologous peripheral blood mononuclear cells (MNCs). Healing rates were compared after a further seven week period by conducting ultrasonographic evaluations, clinical observations, image analysis of maximum tendon diameter and histological investigations. Tendons treated with MNCs displayed significant improvements in fibre linearity in the direct vicinity of the lesion, as well as recovery rate thereof, and experienced less swelling when compared with their untreated counterparts. Healing trends suggested that, given a longer period of observation post-injury, more significant improvements may become apparent. Human adipose tissue is known be an easily accessible and high yielding source of multipotent mesenchymal stem cells. These stem cells could potentially be used for therapeutic advancement of tendon regeneration. Our first goal was to examine the in vitro myogenic differentiation potential of adipose-derived, adherent mononuclear cells (MNCs) from six adult sheep. The second goal was to characterise the population of cells isolated through various available ovine specific, non-mesenchymal stem cell surface markers, namely, CD1, CD31, CD34 and CD45. After incubation, only four of the six MNC cultures started to proliferate. These four cultures all exhibited high myogenic differentiation ability. The isolated cell populations did not express any of the non-mesenchymal stem cell specific cell surface markers. In conclusion, our data suggests that peripheral blood stem cells and adipose-derived stem cells are important candidate cell types for therapeutic application to improve tendon repair in horses and sheep. Sufficient time must be allowed following injury and prior to stem cell treatment (at least one month) and a controlled exercise program should be followed posttreatment. A larger sample size is required and at least six months of recovery before macroscopic and histological repair can be analysed more accurately and conclusively. Ultrasonography should be carried out on a continuous basis, as it is a non-invasive method of monitoring change over time.

Page generated in 0.1077 seconds