• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Variational Asymptotic Procedure for Laminated Composite Shells

Lee, Chang-Yong 25 June 2007 (has links)
Unlike published shell theories, the main two parts of this thesis are devoted to the asymptotic construction of a refined theory for composite laminated shells valid over a wide range of frequencies and wavelengths. The resulting theory is applicable to shells each layer of which is made of materials with monoclinic symmetry. It enables one to analyze shell dynamic responses within both long-wavelength, low- and high-frequency vibration regimes. It also leads to energy functionals that are both positive definiteness and sufficient simplicity for all wavelengths. This whole procedure was first performed analytically. From the insight gained from the procedure, a finite element version of the analysis was then developed; and a corresponding computer program, DVAPAS, was developed. DVAPAS can obtain the generalized 2-D constitutive law and recover accurately the 3-D results for stress and strain in composite shells. Some independent works will be needed to develop the corresponding 2-D surface analysis associated with the present theory and to continue towards full verification and validation of the present process by comparison with available published works.
2

Development of CFD method to model thermal properties of laminates in a truck cab : Modeling solids and HVAC performance

Mohan, Aniruddh January 2022 (has links)
The study of Heating, Ventilation and Air Conditioning (HVAC) system performance is important to understand its energy consumption, especially for electric vehicles. The purpose of this thesis is to develop a methodology to simulate the flow within the Scania S20H cab while also capturing the thermal properties of the fluid and solids within the cab. This is done by setting up a heat-up simulation of a stationary cab in STAR-CCM+ (Siemens Industry Software Inc, Plano TX,USA). The thesis speaks about the limitations with the current methodologies and delves into the theoretical aspects of such a scenario. The new method is a complete Computational Fluid Dynamics (CFD) method that involves conjugate heat transfer, shell modeling and temperature dependent Heat Transfer Coefficient (HTC). A benchmark case is run to understand the uncertainties introduced by virtue of the shell model. When its effects are understood and deemed minimal in the context of thesis, a steady state case for the full truck model is simulated. After it was found that the physics is well captured, a fully transient case is run to validate the model against the experimental data. The simulations best capture the behaviour of low insulation and low thickness areas such as the windshield. The gap between the simulation and experiment increases with increasing thickness and insulation. The model is found to perform mostly well with some variations between regions in the cab. The thesis satisfied its objectives in developing a methodology to better ease the conceptual design process. Additionally, guidelines for the workflow of the methodology are presented along with the limitations and scope for improvement.
3

3D Printable Designs of Rigid and Deformable Models

Yao, Miaojun January 2017 (has links)
No description available.

Page generated in 0.0889 seconds