Spelling suggestions: "subject:"shewhart chart"" "subject:"shewharts chart""
1 |
Variable Sampling Rate Control Charts for Monitoring Process VarianceHughes, Christopher Scott 20 May 1999 (has links)
Industrial processes are subject to changes that can adversely affect product quality. A change in the process that increases the variability of the output of the process causes the output to be less uniform and increases the probability that individual items will not meet specifications.
Statistical control charts for monitoring process variance can be used to detect an increase in the variability of the output of a process so that the situation can be repaired and product uniformity restored. Control charts that increase the sampling rate when there is evidence the variance has changed gather information more quickly and detect changes in the variance more quickly (on average) than fixed sampling rate procedures. Several variable sampling rate procedures for detecting increases in the process variance will be developed and compared with fixed sampling rate methods.
A control chart for the variance is usually used with a separate control chart for the mean so that changes in the average level of the process and the variability of the process can both be detected. A simple method for applying variable sampling rate techniques to dual monitoring of mean and variance will be developed. This control chart procedure increases the sampling rate when there is evidence the mean or variance has changed so that changes in either parameter that will negatively impact product quality will be detected quickly. / Ph. D.
|
2 |
GLR Control Charts for Monitoring a ProportionHuang, Wandi 19 December 2011 (has links)
The generalized likelihood ratio (GLR) control charts are studied for monitoring a process proportion of defective or nonconforming items. The type of process change considered is an abrupt sustained increase in the process proportion, which implies deterioration of the process quality. The objective is to effectively detect a wide range of shift sizes.
For the first part of this research, we assume samples are collected using rational subgrouping with sample size n>1, and the binomial GLR statistic is constructed based on a moving window of past sample statistics that follow a binomial distribution. Steady state performance is evaluated for the binomial GLR chart and the other widely used binomial charts. We find that in terms of the overall performance, the binomial GLR chart is at least as good as the other charts. In addition, since it has only two charting parameters that both can be easily obtained based on the approach we propose, less effort is required to design the binomial GLR chart for practical applications.
The second part of this research develops a Bernoulli GLR chart to monitor processes based on the continuous inspection, in which case samples of size n=1 are observed. A constant upper bound is imposed on the estimate of the process shift, preventing the corresponding Bernoulli GLR statistic from being undefined. Performance comparisons between the Bernoulli GLR chart and the other charts show that the Bernoulli GLR chart has better overall performance than its competitors, especially for detecting small shifts. / Ph. D.
|
Page generated in 0.0553 seconds