Spelling suggestions: "subject:"chips -- fouling"" "subject:"chips -- couling""
1 |
Siloxane-Polyurethane Fouling-Release Coatings Based On PDMS MacromersSommer, Stacy Ann January 2011 (has links)
Marine biofouling is the accumulation of organisms onto surfaces immersed
in sea water. Fouling of ships causes an increase in hydrodynamic drag which
leads to performance issues such as increased fuel consumption and a reduced
top operating speed. Fouling-release (FR) coatings are one way that paints have
been used in combating biofouling by allowing for the easy removal of settled
organisms. Traditional FR coatings are silicone elastomers which are soft, easily
damaged, and require a tie coat for adhesion to marine primers. Siloxanepolyurethane
FR coatings have shown promise as FR coatings, providing
enhanced durability and toughness, better adhesion to marine primers, and
comparable FR performance to commercial coatings. Preliminary studies were conducted to explore the use of PDMS macromers
in the preparation of siloxane-polyurethane FR coatings. Attachment and removal
of fouling organisms on the siloxane-polyurethane coatings based on PDMS
macromers was comparable to commercial FR coatings. Extended water aging
was also carried out to determine effects of extended water immersion on the
fouling-release performance of the coatings. At up to four weeks of aging, the FR
performance of the coatings was not affected. Static immersion marine field testing was performed to determine the
fouling-release performance of siloxane-polyurethane coatings prepared with
PDMS macromers. The performance was found to be comparable to commercial FR coatings for up to one year, including water jet removal of slimes, barnacle
push-off removal, and soft sponging. The coatings showed good fouling-release
performance until extremely heavy fouling was allowed to settle.
Underwater hull cleaning was conducted for one siloxane-polyurethane
composition identified as a top performer from static field testing. The coating was
easily cleaned of fouling with rotating brushes for six months. The cleaning
capability of the coating was reduced when large barnacles and other extremely
heavy fouling was present. A commercial FR coating became heavily damaged
with brush cleaning while the siloxane-polyurethane coating remained mostly
undamaged. With more frequent cleaning, it is suspected that siloxanepolyurethane
coatings would show cleaning capability for longer periods of time.
Pigmentation of siloxane-polyurethane coatings based on difunctional
PDMS and PDMS macromers was explored to investigate the effect on FR
performance. Pigmentation with titanium dioxide caused a slight decrease in FR
performance in some cases, but this was easily overcome by the addition of
slightly more PDMS in the coating binder, thus illustrating the feasibility of
siloxane-polyurethane coatings as effective, pigmented FR coatings.
Finally, the exploration of unique PDMS polymer architectures has been
explored for the development of additional, novel, fouling-release coatings. The
incorporation of end-functional PDMS homopolymer molecular brushes and
branched PDMS macromers into siloxane-polyurethane fouling-release coatings
shows promise for the development of unique coatings where improved FR
performance may be obtained. / Office of Naval Research (U.S.)
|
2 |
Proposed South African management framework for the implementation of the International Convention for the Control and Management of Ships' Ballast Water and SedimentsNolting, Janine January 2011 (has links)
South Africa, strategically situated at the southern tip of Africa, is edged on three sides by almost 3000 km of coastline surrounded by the Indian Ocean and the Atlantic Ocean (South African Tourism, 2011). This vast ocean expanse is responsible for conveying approximately 96% of South Africa’s exports (Brand South Africa, 2011). Despite the positive economic effects of the shipping industry, translocation of harmful organisms and pathogens via ballast water and sediments inside ballast water tanks has far reaching global environmental (and economic) impacts (Oliviera, 2008:1; David and Gollasch, 2008:1966). Ballast water is the water that is taken on in order to manage the draft of the ship, to help with propulsion, manoeuvrability, trim control, list and stability (Oliviera, 2008:2). The discharge of ballast water into the world’s oceans has resulted in the transfer of ecologically harmful sea-life into non-native environments (IMO, 2011), resulting in major environmental threats to our oceans (Bax, Williamson, Aguero, Gonzalez and Geeves, 2003:313). Various international documents have been developed to deal with the ballast water issue, culminating in the introduction of the International Convention for the Control and Management of Ships’ Ballast Water and Sediments (“the Convention”) in 2004. The Convention aims at achieving a reduction in the transfer and subsequent impacts of aquatic organisms via the ballast water and sediment of ships. On a local level, South Africa does not have direct legislation or regulations dealing with ballast water (Duncan, 2007:34) and relies on the combination of a number of pieces of legislation relating to environmental management, coastal management, biodiversity, alien invasive species control, port control and ship safety (National Environmental Management Act, 1998, National Environmental Management: Biodiversity Act, 2004, National Environmental Management: Integrated Coastal Management Act, 2009, National Ports Act, 2005 and Merchant Shipping Act, 1951). Although the Convention was ratified by South Africa in 2008 (Department of International Relations and Cooperation, 2011) it is still not in force and there still exists no other consolidated legal mechanism through which ballast water is managed. This research has investigated the various roles, responsibilities and mandates of South African competent authorities under the aforementioned legislation in managing ballast water, and has determined that there is definite legislative and institutional fragmentation as well as overlaps. A comparative analysis of management frameworks developed both locally and internationally was conducted in order to develop a management framework for ballast water management in South Africa. Various legislative, institutional and functional aspects were identified and adapted for inclusion in a South African management framework. A co-ordinated approach to ballast water management has been developed in the management framework which is anticipated to result in more definitive roles and responsibilities of the various South African departments involved in the management of ballast water and implementation of the Convention.
|
Page generated in 0.0766 seconds