• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Taxi demand prediction using deep learning and crowd insights / Prognos av taxiefterfrågan med hjälp av djupinlärning och folkströmsdata

Jolérus, Henrik January 2024 (has links)
Real-time prediction of taxi demand in a discrete geographical space is useful as it can minimise service disequilibrium by informing idle drivers of the imbalance, incentivising them to reduce it. This, in turn, can lead to improved efficiency, more stimulating work conditions, and a better customer experience. This study aims to investigate the possibility of utilising an artificial neural network model to make such a prediction for Stockholm. The model was trained on historical demand data and - uniquely - crowd flow data from a cellular provider (aggregated and anonymised). Results showed that the final model could generate very helpful predictions (only off by less than 1 booking on average). External factors - including crowd flow data - had a minor positive impact on performance, but limitations regarding the setup of the zones lead to the study being unable to make a definitive conclusion about whether crowd flow data is effective in improving taxi demand predictors or not. / Prognos av taxiefterfrågan i ett diskret geografiskt utrymme är användbart då det kan minimera obalans mellan utbud och efterfrågan genom att informera lediga taxiförare om obalansen och därmed utjämna den. Detta kan i sin tur leda till förbättrad effektivitet, mer stimulerande arbetsförhållanden och en bättre kundupplevelse. Denna studie ämnar att undersöka möjligheten att använda artificiella neurala nätverk för att göra en sådan prognos för Stockholm. Modellen tränades på historisk data om efterfrågan och - unikt för studien - folkströmsdata (aggregerad och anonymiserad) från en mobiloperatör. Resultaten visade att den slutgiltiga modellen kunde generera användbara prognoser (med ett genomsnittligt prognosfel med mindre än 1 bil per tidsenhet). Externa faktorer – inklusive folkströmsdata – hade en märkbar positiv inverkan på prestandan, men begränsningar rörande framställningen av zonerna ledde till att studien inte kunde dra en definitiv slutsats om huruvida folkströmsdata är effektiva för att förbättra prognoser för taxiefterfrågan eller ej.

Page generated in 0.1087 seconds