• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Discrete and continuous time methods of optimization in pension fund management

Muller, Grant Envar January 2010 (has links)
>Magister Scientiae - MSc / Pensions are essentially the only source of income for many retired workers. It is thus critical that the pension fund manager chooses the right type of plan for his/her workers.Every pension scheme follows its own set of rules when calculating the benefits of the fund’s members at retirement. Whichever plan the manager chooses for the members,he/she will have to invest their contributions in the financial market. The manager is therefore faced with the daunting task of selecting the most appropriate investment strat-egy as to maximize the returns from the financial assets. Due to the volatile nature of stock markets, some pension companies have attached minimum guarantees to pension contracts. These guarantees come at a price, but ensure that the member does not suffer a loss due to poorly performing equities.In this thesis we study four types of mathematical problems in pension fund management,of which three are essentially optimization problems. Firstly, following Blake [5], we show in a discrete time setting how to decompose a pension benefit into a combination of Euro-pean options. We also model the pension plan preferences of workers, sponsors and fund managers. We make a number of contributions additional to the paper by Blake [5]. In particular, we contribute graphic illustrations of the expected values of the pension fund assets, liabilities and the actuarial surplus processes. In more detail than in the original source, we derive the variance of the assets of a defined benefit pension plan. Secondly,we dedicate Chapter 6 to the problem of minimizing the cost of a minimum guarantee included in defined contribution (DC) pension contracts. Here we work in discrete time and consider multi-period guarantees similar to those in Hipp [25]. This entire chapter is original work. Using a standard optimization method, we propose a strategy that cal- culates an optimal sequence of guarantees that minimizes the sum of the squares of the present value of the total price of the guarantee. Graphic illustrations are included to in-dicate the minimum value and corresponding optimal sequence of guarantees. Thirdly, we derive an optimal investment strategy for a defined contribution fund with three financial assets in the presence of a minimum guarantee. We work in a continuous time setting and in particular contribute simulations of the dynamics of the short interest rate process and the assets in the financial market of Deelstra et al. [19]. We also derive an optimal investment strategy of the surplus process introduced in Deelstra et al. [19]. The results regarding the surplus are then converted to consider the actual investment portfolio per- taining to the wealth of the fund. We note that the aforementioned paper does not use optimal control theory. In order to illustrate the method of stochastic optimal control, we study a fourth problem by including a discussion of the paper by Devolder et al. [21] in Chapter 3. We enhance the work in the latter paper by including some simulations. The specific portfolio management strategies are applicable to banking as well (and is being pursued independently).
2

Interest Rate Modeling / Modely finančních časových řad a jejich aplikace

Kladívko, Kamil January 2005 (has links)
I study, develop and implement selected interest rate models. I begin with a simple categorization of interest rate models and with an explanation why interest rate models are useful. I explain and discuss the notion of arbitrage. I use Oldrich Vasicek's seminal model (Vasicek; 1977) to develop the idea of no-arbitrage term structure modeling. I introduce both the partial di erential equation and the risk-neutral approach to zero-coupon bond pricing. I briefly comment on affine term structure models, a general equilibrium term structure model, and HJM framework. I present the Czech Treasury yield curve estimates at a daily frequency from 1999 to the present. I use the parsimonious Nelson-Siegel model (Nelson and Siegel; 1987), for which I suggest a parameter restriction that avoids abrupt changes in parameter estimates and thus allows for the economic interpretation of the model to hold. The Nelson-Siegel model is shown to fit the Czech bond price data well without being over-parameterized. Thus, the model provides an accurate and consistent picture of the Czech Treasury yield curve evolution. The estimated parameters can be used to calculate spot rates and hence par rates, forward rates or discount function for practically any maturity. To my knowledge, consistent time series of spot rates are not available for the Czech economy. I introduce two estimation techniques of the short-rate process. I begin with the maximum likelihood estimator of a square root diff usion. A square root di usion serves as the short rate process in the famous CIR model (Cox, Ingersoll and Ross; 1985b). I develop and analyze two Matlab implementations of the estimation routine and test them on a three-month PRIBOR time series. A square root diff usion is a restricted version of, so called, CKLS di ffusion (Chan, Karolyi, Longsta and Sanders; 1992). I use the CKLS short-rate process to introduce the General Method of Moments as the second estimation technique. I discuss the numerical implementation of this method. I show the importance of the estimator of the GMM weighting matrix and question the famous empirical result about the volatility speci cation of the short-rate process. Finally, I develop a novel yield curve model, which is based on principal component analysis and nonlinear stochastic di erential equations. The model, which is not a no-arbitrage model, can be used in areas, where quantification of interest rate dynamics is needed. Examples, of such areas, are interest rate risk management, or the pro tability and risk evaluation of interest rate contingent claims, or di erent investment strategies. The model is validated by Monte Carlo simulations.

Page generated in 0.0552 seconds