• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coordination Polymer Modified Separator for Mitigating Polysulfide Shuttle Effect in Lithium-Sulfur Batteries

Wan, Yi 19 November 2017 (has links)
The development of the new cathode and anode materials of Lithium-Ion Batteries (LIBs) with high energy density and outstanding electrochemical performance is of substantial technological importance due to the ever-increasing demand for economic and efficient energy storage system. Because of the abundance of element sulfur and high theoretical energy density, Lithium-Sulfur (Li-S) batteries have become one of the most promising candidates for the next-generation energy storage system. However, the shuttling effect of electrolyte-soluble polysulfides severely impedes the cell performance and commercialization of Li-S batteries, and significant progress have been made to mitigate this shuttle effect in the past two decades. Coordination polymers (CPs) or Metal-organic Frameworks (MOFs) have been attracted much attention by virtue of their controllable porosity, nanometer cavity sizes and high surface areas, which supposed to be an available material in suppressing polysulfide migration. In this thesis, we investigate different mechanisms of mitigating polysulfide diffusion by applying a layer of MOFs (including Y-FTZB, ZIF-7, ZIF-8, and HKUST-1) on a separator. We also fabricate a new free-standing 2D coordination polymer Zn2(Benzimidazolate)2(OH)2 with rich hydroxyl (OH-) groups by using a simple, scalable and low cost method at air/water surface. Our results suggest that the chemical stability, the cluster morphology and the surface function groups of MOFs shows a greater impact on minimizing the shuttling effect in Li-S batteries, other than the internal cavity size in MOFs. Meanwhile, the new design of 2D coordination polymer efficiently mitigate the shuttling effect in Li-S battery resulting in a largely promotion of the battery capacity to 1407 mAh g-1 at 0.1 C and excellent cycling performance (capacity retention of 98% after 200 cycles at 0.25C). Such excellent cell performance is mainly owing to the fancying physical and chemical structure controllability of MOFs or CPs, which has substantial potential for future commercial utilizations.
2

Effect of Electrolytes on Room-Temperature Sodium-Sulfur Battery Performance

Daniel Jacob Reed (12457485) 26 April 2022 (has links)
<p>  </p> <p>Room-temperature sodium-sulfur (RT Na-S) batteries are an emergent new technology that are highly attractive due to their low raw materials cost and large theoretical specific energy. However, many fundamental problems still plague RT Na-S batteries that prevent their progression from the research and development phase to the commercial phase. Sulfur and its final discharge product are insulators, and intermediate polysulfide discharge products are soluble in commonly used liquid electrolytes. As a result, RT Na-S cells exhibit large capacity defects, low coulombic efficiencies, and rapid capacity fading. Additionally, the reactive sodium metal anode can form dendrites during cycling, which reduces capacity and shortens cell life. One way to combat these issues is the judicious selection of electrolyte components. In this study, the effects of monoglyme (G1), diglyme (G2), and tetraglyme (G4) glyme ether electrolyte solvents on RT Na-S cell performance are investigated. Galvanostatic cycling of Na/Na symmetric coin cells reveals that the G2 solvent enable stable cycling at low overpotentials over a wide range of current densities. In contrast, the G1-based cells show evidence of dendritic plating, and G4-based cells are not suitable for use at high current densities. Electrochemical impedance spectroscopy during cycling confirms that the G2 solvent facilitates the formation of a strong, stable SEI on the Na electrode surface. Results from galvanostatic cycling of RT Na-S full coin cells demonstrates that G1-based cells deliver the highest initial specific discharge capacities among the three cell types, but G4-based cells are the most reversible. Infinite charging, the indefinite accrual of charge capacity at the high charge voltage plateau, affects all cell types at different cycle numbers and to different extents. This behavior is linked to the strength of the polysulfide shuttle during charge. Optical microscopy experiments show that G2 and G4 facilitate the formation of the S3•- sulfur radical, which reduces capacity. G1 minimizes the radical formation and thus delivers higher initial specific discharge capacity. In order to fully optimize the electrolyte for RT Na-S cells, future work should study glyme solvent blends, additives, and concentrated salts.</p>

Page generated in 0.0447 seconds