• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical transitions in SiO2/crystalline Si/SiO2 quantum wells and nanocrystalline silicon (nc-Si)/SiO2 superlattice fabrication (Restricted for 24 months until Feb. 2006)

Cho, Eun Chel, Electrical Engineering, UNSW January 2003 (has links)
Innovation in photovoltaic technology may offer cost competitive options to other energy sources and become a viable solution for the energy and environmental challenges of the 21st century. One proposed innovative technology is based on all-silicon tandem cells, which are constructed using superlattices consisting of environmental friendly Si and its compounds. The well and barrier materials in superlattices are restricted to silicon and silicon oxide during the present study. Single crystalline Si/SiO2 quantum wells (QWs) have been fabricated by thermal oxidation of silicon-on-insulator (SOI) wafers. It is found that oxide properties in QWs are important for SOI wafers prepared by the SIMOX (Separation by Implantation of Oxygen) technique. However, QWs fabricated from SOI wafers prepared by the ELTRAN (Epitaxial Layer TRANsfer) approach show the effect of quantum confinement without evidence of strong oxide interfacial transitions. In these wafers, evidence for an apparently ordered silicon oxide was found with 1.92?atomic fringe spacing along the (110) direction of the Si structure and with the thickness about 17?along the (100) direction of the Si structure. Luminescence wavelength ranges are from 700nm to 918nm depending on the Si thickness. The luminescence measurements on other positions of the sample show peak and shoulder spectra, which are explained by monolayer fluctuations in QW thicknesses, previously observed in III-V QWs and II-VI QWs. Si/SiO2 superlattices are fabricated by RF magnetron sputtering. Si density is the key issue in crystallizing the superlattice. High-density Si layers crystallize either under high temperature furnace annealing or rapid thermal process annealing. However, low density Si would not crystallize even at high temperature. Crystallized nanocrystals in the Si layers are observed by high resolution transmission electron microscopy (HRTEM) when the Si layer is thicker than 3nm. When Si layers are thinner than 3nm, the Si layers are discontinuous and finally deteriorate into small nanocrystals. The suitability of such superlattices for surface passivation and antireflection coatings is reviewed. Initial attempts to fabricate heterojunctions between Si wafers and Si/SiO2 superlattices resulted in open circuit voltage of 252mV. However, it is expected that better results would be obtained if Si/SiO2 superlattices were fully crystallized.

Page generated in 0.0507 seconds