• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New quaternary amorphous materials Si-B-C-N: reactive magnetron sputtering and an ab-initio study

Houska, Jiri January 2007 (has links)
Doctor of Philosophy / First part of the thesis is focused on experimental preparation of new hard quaternary amorphous materials Si-B-C-N with high thermal stability. Materials were prepared in the form of thin films using reactive magnetron sputtering. The technique used proved to be suitable for reproducible synthesis of these materials. The Si-B-C-N films were generally found to be amorphous with low compressive stress and good adhesion to silicon or glass substrates. The process and film characteristics were controlled by varying the sputter target composition, the Ar fraction in the N2–Ar gas mixture, the negative rf-induced substrate bias, and the substrate temperature. Main conclusions describe the relationships between process parameters, discharge and deposition characteristics and film properties (elemental composition, chemical bonding structure, material hardness, compressive stress or electrical conductivity of materials prepared). Second part of the thesis is focused on ab-initio simulations of structures of experimentally prepared Si-B-C-N materials. In the performed liquid-quench simulations, the Kohn-Sham equations for the valence electrons are expanded in a basis of plane wave functions, while core electrons were represented using Goedecker-type pseudopotentials. We simplified the ion bombardment process by assuming that the primary impact creates a localized molten region of high temperature and sufficiently short cooling time, commonly referred to as a thermal spike. Main conclusions deal with N2 formation in studied materials, effect of implanted Ar on structure and properties of prepared materials, ability of Si to relieve that part of compressive stress which is caused by implanted Ar, and ability of B to improve thermal stability of Si-B-C-N materials. The calculated results are compared with experiment.
2

New quaternary amorphous materials Si-B-C-N: reactive magnetron sputtering and an ab-initio study

Houska, Jiri January 2007 (has links)
Doctor of Philosophy / First part of the thesis is focused on experimental preparation of new hard quaternary amorphous materials Si-B-C-N with high thermal stability. Materials were prepared in the form of thin films using reactive magnetron sputtering. The technique used proved to be suitable for reproducible synthesis of these materials. The Si-B-C-N films were generally found to be amorphous with low compressive stress and good adhesion to silicon or glass substrates. The process and film characteristics were controlled by varying the sputter target composition, the Ar fraction in the N2–Ar gas mixture, the negative rf-induced substrate bias, and the substrate temperature. Main conclusions describe the relationships between process parameters, discharge and deposition characteristics and film properties (elemental composition, chemical bonding structure, material hardness, compressive stress or electrical conductivity of materials prepared). Second part of the thesis is focused on ab-initio simulations of structures of experimentally prepared Si-B-C-N materials. In the performed liquid-quench simulations, the Kohn-Sham equations for the valence electrons are expanded in a basis of plane wave functions, while core electrons were represented using Goedecker-type pseudopotentials. We simplified the ion bombardment process by assuming that the primary impact creates a localized molten region of high temperature and sufficiently short cooling time, commonly referred to as a thermal spike. Main conclusions deal with N2 formation in studied materials, effect of implanted Ar on structure and properties of prepared materials, ability of Si to relieve that part of compressive stress which is caused by implanted Ar, and ability of B to improve thermal stability of Si-B-C-N materials. The calculated results are compared with experiment.

Page generated in 0.0772 seconds