• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of Repetitive Short Circuit Transients on the Conducted Electromagnetic Interference of SiC and Si Based Power Devices

Siraj, Ahmed Shahnewaz 27 May 2021 (has links)
No description available.
2

Intégration et fiabilité d'un disjoncteur statique silicium intelligent haute température pour application DC basse et moyenne tensions / Integration and reliability of a smart solid state circuit breaker for high temperature designed for low and medium DC voltage.

Roder, Raphaël 04 December 2015 (has links)
Cette thèse présente l'étude et la réalisation d'un disjoncteur statique tout silicium et intelligent pouvant fonctionner à haute température (200°C) pour des applications de type DC basse et moyenne tensions. Plusieurs applications dans l’aéronautique, l’automobile et les transports ferroviaires poussent les composants à semi-conducteur de puissance à être utilisés à haute température. Cependant, les Si-IGBT et Si-CoolMOSTM actuellement commercialisés ont une température de jonction spécifiée et estimée à 150°C et quelque fois à 175°C. L’une des faiblesses des convertisseurs provient de la réduction du rendement avec l’augmentation de la température de jonction des composants à semiconducteur de puissance qui peut amener à leur destruction. La solution serait d’utiliser des composants grand-gap (SiC, GaN), qui autorisent un fonctionnement à une température de jonction plus élevée ;mais ces technologies en plein essor ont un coût relativement élevé. Une solution alternative serait de faire fonctionner des composants en silicium à une température de jonction voisine de 200°C afin de conserver l’un des principaux intérêts du silicium en termes de coût. Avant de commencer, le premier chapitre portera sur un état de l’art des différentes techniques de protection aussi bien mécanique que statique afin d’identifier les éléments essentiels pour la réalisation du circuit de protection. Les disjoncteurs hybrides seront aussi abordés afin de voir comment ceux-ci arrivent à combler les lacunes des disjoncteurs mécaniques et purement électroniques (statiques). A partir du chapitre précédent, un disjoncteur statique intelligent de faible puissance sera réalisé afin de mieux cerner les différentes difficultés qui sont liées à ce type de disjoncteur. Le disjoncteur statique sera réalisé à partir de fonction analogique de telle façon à ce qui soit autonome et bas cout. Il en ressort que les inductances parasites ainsi que la température des composants à base de semi-conducteurs ont un impact significatif lors de la coupure.Le chapitre III portera sur une analyse non exhaustive, vis-à-vis de la température, de différents types d’interrupteurs contrôlés à base de semi-conducteur de puissance en s’appuyant sur plusieurs caractérisations électriques (test de conduction, tension de seuil, etc) afin de sélectionner le type d’interrupteur de puissance qui sera utilisé pour le chapitre IV. Comme il sera démontré, les composants silicium à super jonction peuvent se rapprocher du comportement des composants à base de carbure de silicium pour les basses puissances. Un disjoncteur statique 400V/63A (courant de court-circuit prédictible de 5kA) sera étudié et 4développé afin de mettre en pratique ce qui a été précédemment acquis et pour montrer la compétitivité du silicium pour cette gamme de puissance. / This thesis presents a study about a smart solid state circuit breaker which can work at 200°C forlow and medium voltage continuous applications. Some applications in aeronautics, automotive,railways, petroleum extraction push power semiconductor devices to operate at high junctiontemperature. However, current commercially available Si-IGBT and Si-CoolMOS have basically amaximum junction temperature specified and rated at 150°C and even 175°C. Indeed, the main problemin conventional DC-DC converters is the switching losses of power semiconductor devices (linked to thetemperature influence on carrier lifetime, on-state voltage, on-resistance and leakage current) whichdrastically increase with the temperature rise and may drive to the device failure. Then, the use of wideband gap semiconductor like SiC or GaN devices allows higher junction temperature operation (intheory about 500°C) and higher integration (smaller heatsink, higher switching frequency, smallconverter), but are still under development and are expensive technologies. In order to keep theadvantage of low cost silicon devices, a solution is to investigate the feasibility to operate such devicesat junction temperature up to 200°C.Before starting the first starting chapter is a stat of the art of protectives circuit technics as well asmechanics as statics in order to identify essentials elements to develop the protective circuit. Hybridprotective circuits are approached too.From the precedent chapter, a smart and low power solid state circuit breaker is realized to identifyproblems which are linked with this type of circuit breaker. Solid state circuit breaker is developed withanalog components in a way that is autonomous and low cost. It’s follow that stray inductance andtemperature have an important impact when a default occurs.Chapter III give an analyze on different silicon power semiconductor dice towards temperature5relying on statics and dynamics characteristics in order to find the best silicon power switch which beused in the chapter IV. It has been shown that super junction MOSFET has the same behavior at lowpower than silicon carbide MOSFET.Solid state circuit breaker (400V/63A) has been studied and developed, in order to use all theknowledge previously acquired and to show the competitively of the silicon for this power range.
3

Design and Assessment of a Grid Connected Industrial Full-SiC Converter for 690 V Grids

Fuentes Castro, Carlos Daniel 20 May 2022 (has links)
Die Bedeutung von Leistungshalbleitern mit großem Bandabstand (Wide Band Gap, WBG) nahm in den letzten drei Jahrzehnten kontinuierlich zu. Diese Bauelemente haben das Potenzial, Silizium (Si) - Bauelemente in bestimmten Anwendungen sowie Leistungs- und Frequenzbereichen zu ersetzen. Siliziumkarbid (SiC)-Leistungshalbleiter sind die gegenwärtig am Weitesten entwickelten WBG-Leistungshalbleiter. Dank besonderer Materialeigenschaften zeichnen sich SiC-Leistungshalbleiter im Vergleich zu Si-Bauelementen durch einen geringeren spezifischen Widerstand, eine höhere Schaltgeschwindigkeit, geringere schaltverluste sowie eine höhere maximale Sperrschichttemperatur aus. Die deutlich erhöhten Herstellungskosten limitieren den Einsatz von SiC-Leistungshalbleitern auf Anwendungen, in denen die Vorteile dieser Bauelemente die höheren Kosten überkompensieren und Systemvorteile ermöglichen. Heute werden SiC-Leistungshalbleiter z.B. in Solarwechselrichtern oder in Elektrofahrzeugen verwendet. Für Stromrichter industrieller elektrischer Antriebe ist die Kosten-Nutzen-Bilanz des Einsatzes von SiC-Leistungshalbleitern gegenwärtig nicht bekannt. Diese Fragestellung motiviert diese Arbeit. Die Auslegung sowie die daraus resultierenden Vor- und Nachteile eines Stromrichters mit SiC-Leistungshalbleitern für elektrische Industrieantriebe ist der Untersuchungsgegenstand dieser Arbeit. Zu diesem Zweck wurde unter Einhaltung industrieller Auslegungskriterien ein 240 kVA SiC-basierter Stromrichterdemonstrator als aktiver Gleichrichter am dreiphasigen 690 V Niederspannungsnetz untersucht. Auf der Basis einer Stromrichterauslegung für SiC- und Si-Leistungshalbleiter wurde ein theoretischer Vergleich von Kosten, Effizienz, Größe und Gewicht durchgeführt. Die Arbeit stellt zunächst den Stand der Technik für SiC-Leistungshalbleiter dar. Anschließend wird ein geeignetes SiC-MOSFET Module für den industriellen Stromrichter ausgewählt und bezüglich des Schaltverhaltens sowie der Parallelschaltung charakterisiert. Der Auslegung des Stromrichterleistungsteils liegen industrielle Anforderungen zu Grunde. Ein realisierter Demonstrator für einen netzseitigen Stromrichter (Active Front End) ist durch eine symmetrische Parallelschaltung von zwei SiC-Modulen, geeignete Ansteuerschaltungen (Gate Drive Units), eine niedrige Streuinduktivität im Kommutierungskreis sowie ein LCL-Filter mit Standard-Kernmaterialien gekennzeichnet. Der Stromrichtervergleich zeigt, dass der betrachtete Stromrichter mit SiC-Leistungshalbleitern im gesamten Betriebsbereich geringere Verluste verursacht als ein vergleichbarer Stromrichter mit Si-Leistungshalbleitern. Der SiC - basierte Stromichter ermöglicht auch eine deutliche Gewichtsreduktion bei ca. 89% der Systemkosten. Somit stellen SiC-Leistungshalbleiter eine attraktive technische Lösung für die untersuchte Anwendung eines aktiven Gleichrichters für industrielle elektrische Antriebe dar. / Wide bandgap (WBG) power semiconductors have drawn steadily increasing interest in power electronics in the last three decades. These devices have shown the potential of replacing silicon as the default semiconductor solution for several applications in determined power and frequency ranges. Among them the most mature WBG semiconductor material is silicon carbide (SiC), which presents several characteristics at the crystal level that translate in the potential of presenting lower resistivity, be able to switch faster with lower switching loss, and present both higher characteristics to tolerate and dissipate heat when com pared with silicon. However, the same characteristics that make it great also present a different set of drawbacks to be considered, which aligned with its increased cost make it challenging to assess if its advantages are justified for a particular application. Applications that highly value efficiency and/or power density are the most benefited, and converter solutions featuring the technology have already breached into these application markets. However in other applica tions, the line from which silicon carbide starts making sense in the cost/benefits/drawbacks balance is not clear. This is typically the case of industrial applications, which were the main focus and motivation of this work. Hence, in this work the main goal has been to determine the basic characteristics, advantages and limitations that SiC technology designs for industrial low voltage high power grid connected converters present. To that end, a 690 V, 240 kVA SiC-based grid-tied converter demonstrator following industrial design criteria has been developed. Then, based on this design procedure a theoretical comparison between a 690 V, 190 kVA SiC-based converter against a silicon-based converter designed for the same power output has been performed to compare them regarding cost, efficiency, size and weight. This work also comprises a thorough revision of the state of art of SiC devices, which led to the selection of the switching device. Additionally, a characterization of both single and parallel-connected operation of the semiconductor modules was performed, to determine the module characteristics and its suitability to build the SiC converter demonstrator. Results show that the converter demonstrator operates as designed, proving that is possible with the corresponding precautions to achieve: a low inductive power loop, balanced parallel connection of SiC modules, adequate driving circuits for the parallel-connected modules and an adequate filtering solution in compliance with grid-codes based on standard core materials for the selected switching frequency. Finally, the theoretical comparison between the two designed power converters shows that, attained to the conditions of the comparison, the SiC converter solution presents efficiency gains over the whole operating range, while presenting substantial weight savings at 89% of the costs of the Si-IGBT design, presenting itself as the cost-effective solution for the presented application requirements under the given design constraints.

Page generated in 0.0218 seconds