• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 3
  • Tagged with
  • 12
  • 12
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Densification, Oxidation, Mechanical And Thermal Behaviour Of Zirconium Diboride (ZrB2) And Zirconium Diboride - Silicon Carbide (ZrB2-Sic) Composites

Patel, Manish 07 1900 (has links) (PDF)
Sharp leading edges and nose caps on hypersonic vehicles, re-entry vehicles and reusable launch vehicles are items of current research interest for enhanced aerodynamic performance and maneuverability. The unique combination of mechanical properties, physical properties, thermal / electrical conductivities and thermal shock resistance of ZrB2 make it a promising candidate material for such applications. In the recent past, a lot of work has been carried out on ZrB2-based materials towards processing as well as characterization of their mechanical, oxidation and thermal behaviour. ZrB2 based materials have been successfully processed by conventional hot pressing, pressureless sintering, reactive hot pressing and spark plasma sintering. Densification of ZrB2 gets activated when the oxide impurities (B2O3 and ZrO2) were removed from particle surfaces, which minimized coarsening. B4C is widely used as a sintering additive for ZrB2 because it reduces ZrO2 at low temperature. It is found that full densification in ZrB2 based materials by hot pressing is achieved either at 2000 C and higher temperatures with moderate pressure of 20-30 MPa or at reduced temperature (1790-1840 C) with much higher pressure (800-1500 MPa). But no study is available that identifies the dominant hot pressing mechanism at different temperatures and pressures. On the other hand, reinforcement of SiC in ZrB2 is known to increase flexural strength, fracture toughness and oxidation resistance. It has been shown that oxidation resistance of ZrB2-SiC composites is superior to that of monolithic ZrB2 and SiC. For high temperature applications in air, the residual strength (room temperature strength after exposure in air at high temperatures) of non oxide ceramics after oxidation is important. A few reports are available on residual strength of ZrB2 –SiC composite after thermal exposure at high temperatures. In contrast to the literature on composites, there are no reports available on the residual strength of monolithic ZrB2 after exposure to high temperatures. Also, previous studies on residual strength of ZrB2-SiC composites have been limited to a single temperature of exposure. But there is a need to measure the residual strength after exposure to a range of temperatures since the oxide layer structure changes with temperature. The room temperature thermal conductivity data for ZrB2 and ZrB2-SiC composite shows a wide scatter in value as well as a dependence on microstructural parameters, especially porosity and grain size. Also, there is insufficient data available for the high temperature thermal conductivity of ZrB2-SiC. Therefore, it is difficult to evaluate the effect of SiC content on thermal conductivity of ZrB2-SiC composites at high temperatures. The present thesis seeks to address some of these gaps to better understand the suitability of ZrB2 and ZrB2-SiC composites for ultra-high temperature applications. In the present work, hot pressing is used for densification of ZrB2 and ZrB2-SiC composites. Different amounts of B4C (0, 0.5, 1, 3 & 5 wt %) were used as sintering additives in ZrB2 and hot pressed at 2000 C with 25 MPa applied pressure. The hot pressed samples are characterized for their microstructural, mechanical properties and oxidation behaviour. By addition of B4C, density as well as micro-hardness increased. For lower B4C content (0.5 & 1 wt %), hot pressed ZrB2 has shown considerable improvement in flexural strength after exposure in air at 1000 C for 5 hours, while higher B4C content (3 & 5 wt %) leads to marginal or no improvement. Due to the better mechanical and oxidation behavior of composites containing SiC, the densification behavior during hot pressing was studied. The densification behaviors as well as the microstructures for hot pressing of ZrB2-20 % SiC composite were found to change in a very 0 narrow temperature range. During hot pressing at 1700 C, the densification was found to be mechanically driven particle fragmentation and rearrangement. On the other hand, thermally activated mass transport mechanisms started dominating after initial particle fragmentation and rearrangement after hot pressing at 1850 C and 2000 C. At 2000 C, the rate of grain boundary diffusion was enhanced which resulted into annihilation of dislocation. The effect of SiC contents (10, 20 & 30 vol %) on mechanical and oxidation behavior of ZrB2-SiC composite were also studied. The average micro-hardness and fracture toughness of ZrB2-SiC composites increased with SiC content. But the flexural strength of ZrB2-20 vol % SiC composites was found to be the highest. Oxidation and residual strength of hot pressed ZrB2 -SiC composites were evaluated as a function of SiC contents after exposure over a wide temperature range (1000-1700 C). Multilayer oxide scale structures were found after oxidation. The composition and thickness of these multilayered oxide scale structures were found to depend on exposure temperature and SiC content. After exposure to 1000 C for 5 hours, the residual strength of ZrB2 -SiC composites improved by nearly 60 % compared to the as-hot pressed composites with 20 & 30 vol % SiC. On the other hand, the residual strength of these composites remained unchanged after 1500 C for 5 hours. A drastic degradation in residual strength was observed in composites with 20 & 30 vol % SiC whereas strength was retained for ZrB2-10 % SiC composite after exposure to 1700 C for 5 hours in ZrB2 –SiC. Therefore, residual strength of ZrB2-10 % SiC composite was measured at different exposure times (up to 10 hours) at 1500 0C. An attempt was made to correlate the microstructural changes and oxide scales with residual strength with respect to variation in SiC content and temperature of exposure. Since the ZrB2-20 vol % SiC composite showed the maximum strength, the dependence of strength on various microstructural as well processing parameters was also studied. It was found that porosity, grain size as well as surface residual stress due to grinding influenced the strength of ZrB2-20 vol % SiC composites. Finally, thermal diffusivity and conductivity of hot pressed ZrB2 with different amounts of B4C and ZrB2-SiC composites were investigated experimentally over a wide temperature range (25 – 1500 C). Both thermal diffusivity as well as thermal conductivity was found to decrease with increase in temperature for all hot pressed ZrB2 and ZrB2-SiC composites. At around 200 C, thermal conductivity of ZrB2-SiC composites was found to be composition independent. Thermal conductivity of ZrB2-SiC composites was also correlated with theoretical predictions of the Maxwell-Eucken relation. The dominated mechanisms of heat transport for all hot pressed ZrB2 and ZrB2-SiC composites at room temperature were determined by Wiedemann-Franz analysis using measured room temperature electrical conductivity of these materials. It was found that the electronic thermal conductivity dominated for all monolithic ZrB2 whereas the phonon contribution to thermal conductivity increased with SiC contents for ZrB2-SiC composites. The heat conduction mechanism at high temperature was also studied by measuring the high temperature electrical conductivity of ZrB2 and ZrB2-SiC composites. The effect of porosity on thermal diffusivity and conductivity was also studied for ZrB2-20 vol % SiC composites.
2

Fracture toughness characterization of thin Ti/SiC composites

Ma, Wei 12 1900 (has links)
Titanium based alloys reinforced uniaxially with silicon carbide fibres (Ti/SiC) are advanced and innovative materials for aerospace vehicles. To avoid potential problems, these new materials should be extensively tested and analyzed before application. This research focuses on experimental fracture toughness study on 0.5 mm thick Ti/SiC composite materials for aerospace applications. The fracture toughness tests are mainly based on BS 7448 with some modifications for transversely isotropic behaviour of the composite materials. By loading on specimens in the direction perpendicular to the fibre axis, three critical values of fracture toughness parameters characterizing fracture resistance of material, plane strain fracture toughness [Plane strain fracture toughness }, critical crack tip opening displacement [Critical crack tip opening displacement ] and critical J-integral [Critical at the onset of brittle crack extension or pop-in when Δa is less than 0.2 mm. ]are measured for two kinds of titanium alloy specimens and three kinds of Ti/SiC composites specimens. The values of [Provisional value of Plane strain fracture toughness ] obtained from the fracture toughness tests are not valid [Plane strain fracture toughness ] for these materials, since the thickness of specimens is insufficient to satisfy the minimum thickness criterion; however, the results could be used as particular critical fracture toughness parameter for 0.5 mm thick structures of the materials. The valid values of [Critical J at the onset of brittle crack extension or pop-in when Δa is less than 0.2 mm. ] and [Critical crack tip opening displacement ] could be used as fracture toughness parameters for all thickness of structures of the materials. The results also show that: fracture toughness of the titanium alloys decreases dramatically after being unidirectional reinforced with SiC fibre, which is mainly triggered by poor fibre/matrix bonding condition. Moreover, Ti-Al3-V2.5 reinforced with 25% volume fraction SiC fibre performs better than the other two composites in fracture resistance.
3

KINETICS, PROCESSING, AND PROPERTIES OF Si/SiC COMPOSITES FABRICATED BY REACTIVE-MELT INFILTRATION

ZHOU, HONG 11 October 2001 (has links)
No description available.
4

Etude du comportement à l'oxydation de céramiques ultra-réfractaires à base de diborure d'hafnium (ou zirconium) et de carbure de silicium sous oxygène moléculaire et dissocié / Study of the oxidation behavior of HfB2 (or ZrB2) based-ultra-high temperature ceramics with silicon carbide under molecular and dissociated oxygen

Piriou, Cassandre 07 November 2018 (has links)
Ce travail se place dans le cadre des matériaux thermo-structuraux utilisés dans les applications aéronautiques et aérospatiales. Les composites HfB2-SiC et ZrB2-SiC se sont avérés très prometteurs pour ces domaines, dans la mesure où ceux-ci présentent de bonnes tenues à l’oxydation à très haute température. L’enjeu principal de ce travail réside dans l’amélioration de leurs performances (durée de vie, résistance aux attaques chimiques et aux chocs thermiques) ainsi que dans la compréhension des mécanismes d’oxydation impliqués dans deux environnements distincts (sous oxygène moléculaire, à pression atmosphérique, de 1450 K à 2000 K et sous oxygène dissocié, à faible pression partielle d’oxygène, de 1800 K à 2200 K). Pour cela, une première étape a consisté à élaborer, par Spark Plasma Sintering (SPS), plusieurs nuances de matériaux homogènes en termes de microstructure et de densité relative. Leur comportement dans ces deux environnements a ensuite été étudié grâce à l’utilisation de dispositifs d’oxydation adaptés (four solaire et analyseur thermogravimétrique) et de techniques de caractérisation complémentaires (microscopie électronique à balayage, diffraction des rayons X, spectroscopies Raman et de photo-électrons). / This work is part of thermo-structural materials used in the aeronautic and aerospace fields. HfB2-SiC and ZrB2-SiC composites turned out to be very promising for these areas insofar as they present good oxidation resistance at very high temperature. The main issue of this work consists in improving their performances (lifetime, chemical attacks and thermal shocks resistance) and in the understanding of the oxidation mechanisms involved in two different environments (under molecular oxygen, at atmospheric pressure, from 1450 K to 2000 K and under dissociated oxygen, at low oxygen partial pressure, from 1800 K to 2200 K). To this end, a first step consisted in synthesizing, by Spark Plasma Sintering (SPS), several compositions of homogeneous materials in terms of microstructure and relative density. Then, their behavior in both environments has been studied thanks to the use of adapted oxidation facilities (solar furnace and thermogravimetric analyzer) and complementary characterization techniques (scanning electron microscopy, X-ray diffraction, Raman and photo-electron spectroscopies).
5

Modélisation du comportement des composites à matrice céramique auto-cicatrisante sous charge et atmosphère oxydante / Modeling of the mechanical behavior of self-healing ceramic matrix composites under load and oxidizing atmosphere

Perrot, Grégory 17 December 2015 (has links)
Les matériaux composites à matrice céramique (CMCs) à matrice auto-cicatrisantes (MAC) sont développées depuis plusieurs années pour leurs possibilités d'application dans le domaine de la propulsion aéronautique où ils se révèlent trés intéressants en termes de résistance à des conditions sévères et de légèreté. Dans le cadre d'un programme d'étude du comportement des CMC-MAC et de leurs mécanismes d'endommagement, l'objectif de ces travaux est de construire un modèle numérique multi-physique permettant de déterminer la durée de vie d'un échantillon d'un tel matériau soumis à une contrainte mécanique dans un environnement oxydant. L'étude porte sur la mise en place d'un couplage entre deux codes de calcul : un code d'endommagement mécanique et un code physico-chimique qui a été développé au cours de cette thèse. De façon inédite, on se place dans la géométrie 2D d'un plan de fissure, partant d'une image détaillée de l'arrangement des constituants (fibres, interphases, matrice multi-couche). Les différentes parties du programme ont été validées indépendamment et des résultats du calcul complet sont présentés et discutés. / Self-Healing Ceramics Matrix Composites (HT-CMC) are developed since several years for theirapplication in aeronautic applications and are interesting for their good resistance to criticalenvironments. As part of a study program of the HT-CMC behavior and their damagemechanisms, the objective of this thesis is to build a multi-physics numerical model todetermine the lifetime of a sample such a material subjected to a mechanical stress in anoxidizing environment. The study focuses on the establishment of a coupling between twocomputer codes: a code of mechanical damage and a physical-chemical code that wasdeveloped during this thesis. In an unprecedented way, we place ourselves in the 2D geometryof a crack plane, starting from a detailed picture of the arrangement of the components (fiber,interphase, multi-layer matrix). The different parts of the code have been independentlyvalidated and the results of the complete calculation are presented and discussed.
6

Caractérisation thermique de structures composites SiCf/SiC tubulaires pour applications nucléaires / Thermal characterization of SiCf/SiC tubular composite structures for nuclear applications

Duquesne, Loys 17 December 2015 (has links)
Les recherches portant sur le développement des composites réfractaires de type SiCf/SiC pour application gainage du combustible des réacteurs de géneration IV ont conduit le CEA à s’intéresser aucomportement thermique de ces matériaux. En particulier, la connaissance des propriétés thermiques représente un des points cles dans la conception des composants. Au regard du concept sandwichdont la complexité de structure et la géométrie cylindrique s'éloigne de celle d'éprouvettes planes classiquement utilisées, les méthodes de mesures usuelles ne conviennent pas.Ce travail de thèse s’intéresse à la caractérisation et à la modélisation du comportement thermiquede ces structures. Une première partie du travail concerne l'identification des paramètres thermiquesglobaux des différentes couches constitutives d'une gaine sandwich . Pour cela, une méthodeash est employée et un banc d’expériences adapte aux géométries tubulaires a pu être développe.L’écriture d'un nouveau modèle d'estimation, fonde sur le couplage des signaux recueillis à la fois enface avant et en face arrière, permet aujourd'hui d’accéder par la mesure a la diffusivité thermiquedes composites tubulaires via la thermographie infrarouge. Dans une seconde partie de la thèse,une démarche matériau virtuel a été mise en place pour décrire le comportement thermique d'unegaine sandwich à partir des propriétés des constituants élémentaires (bres et matrice). Cespropriétés, obtenues avec deux méthodes d'estimation différentes permettant d'exploiter les mesuresde deux expériences distinctes basées sur la thermographie infrarouge, sont utilisées comme donnéespour la modélisation du transfert thermique au sein de ces gaines. Les confrontations réalisées entrecampagnes de mesures et expériences numériques permettent normalement d’appréhender le poids desdifférents facteurs d'influence qui régissent les transferts thermiques. / Researches on the development on SiCf/SiC refractory composites for generation IV nuclear fuel cladding led the CEA to focus on the thermal behavior of these materials. In particular, knowingthe thermal properties is essential for their components design. Regarding the development of the sandwich" concept, whose complexity and geometry differ from the conventionally used at tubes,usual measurement methods are unsuitable.This PhD reports on the characterization and modeling of the thermal behavior of these structures. The first part concerns the identification of the global thermal parameters of the diferent layers of a"sandwich" sheath. To do so, a ash method is used and an experimental bench suitable for tubular geometries was developed. A new estimation method based on the combination of both collectedsignals in front and rear faces allows the identification of the thermal diffusivity of tubular composites using infrared thermography. The second part focuses on a virtual material approach, established todescribe the thermal behavior of a "sandwich" cladding, starting from the properties of the elementary components (bers and matrix). These properties, obtained using two different estimation methods,allows exploiting the measurements of two separate experiments based on infrared thermography.They are then used as data for the heat transfer modeling in these ducts. Confrontations betweenexperimental measurements and numerical results finally allow gaining insight into the in uence ofthe different key parameters governing the heat transfer.
7

Reactive Hot Pressing Of ZrB2-Based Ultra High Temperature Ceramic Composites

Rangaraj, L 12 1900 (has links)
Zirconium- and titanium- based compounds (borides, carbides and nitrides) are of importance because of their attractive properties including: high melting temperature, high-temperature strength, high hardness, high elastic modulus and good wear-erosion-corrosion resistance. The ultra high temperature ceramics (UHTCs) - zirconium diboride (ZrB2) and zirconium carbide (ZrC) in combination with SiC are potential candidates for ultra-high temperature applications such as nose cones for re-entry vehicles and thermal protection systems, where temperature exceeds 2000°C. Titanium nitride (TiN) and titanium diboride (TiB2) composites have been considered for cutting tools, wear resistant parts etc. There are problems in the processing of these materials, as very high temperatures are required to produce dense composites. This problem can be overcome by the development of composites through reactive hot processing (RHP). In RHP, the composites are simultaneously synthesized and densified by application of pressure and temperatures that are relatively low compared to the melting points of individual components. There have been earlier studies on the fabrication of dense ZrB2-ZrC, ZrB2-SiC and TiN-TiB2 composites by the following methods: Pressureless sintering of preformed powders at high temperatures (1800-2300°C) with MoSi2, Ni, Cr, Fe additions Hot pressing of preformed powders at high temperatures (1700-2000°C) with additives like Ni, Si3N4, TiSi2, TaSi2, TaC Melt infiltration of Zr/Ti into B4C preform at 1800-1900°C to produce ZrB2-ZrC-Zr and TiB2-TiC composites RHP of Zr-B4C, Zr-Si-B4C and Ti-BN powder mixtures to produce ZrB2-ZrC, ZrB2-SiC and TiN-TiB2 powder mixtures at 1650-1900°C Spark plasma sintering of powder mixtures at 1800-2100°C There has been a lack of attention paid to the conditions under which ceramic composites can be produced by simple hot pressing (~50 MPa) with minimum amount of additives, which will not affect the mechanical properties of the composites. There has been no systematic study of microstructural evolution to be able to highlight the change in relative density (RD) with temperature during RHP by formation of sub-stoichiometric compounds, and liquid phase when a small amount of additive is used. The present study has been undertaken to establish the experimental conditions and densification mechanisms during RHP of Zr-B4C, Zr-B4C-Si and Ti-BN powder mixtures to yield (a) ZrB2-ZrC, (b) ZrB2-SiC, (c) ZrB2-ZrC-SiC and (d) TiN-TiB2 composites. The following reactions were used to produce the composites: (1) 3 Zr + B4C → 2 ZrB2 + ZrC (2) 3.5 Zr + B4C → 2 ZrB2 + 1.52rCx- 0.67 (3) (1+y) Zr + C → (1+y) ZrCx- 1/ (1+y) (y=0 to 1) (4) 2 Zr + B4C + Si → 2 ZrB2 + SiC (5) 2.5 Zr + B4C + 0.65 Si → 2 ZrB2 + 0.5 ZrCx + 0.65 SiC (6) 3.5 Zr + B4C + SiC → 2 ZrB2 + 1.5 ZrCx + SiC (5 to 15 vol%) (7) (3+y) Ti + 2 BN → (2+y) TiN1/(1+y) + TiB2 (y=0 to 0.5) (a) ZrB2-ZrC Composites: The effect of different particle sizes of B4C (60-240 μm, <74 μm and 10-20 μm) with Zr on the reaction and densification of composites has been studied. The role of Ni addition on reaction and densification of the composites has been attempted. The effect of excess Zr addition on the reaction and densification has also been studied. The RHP experiments were conducted under vacuum in the temperature range 1000-1600°C for 30 min without and with 1 wt% Ni at 40 MPa pressure. The RHP composites have been characterized by density measurements, x-ray diffraction for phase analysis and lattice parameter measurements, microstructural observation using optical and scanning electron microscopy. Selected samples have been analyzed by transmission electron microscopy. The hardness of the composites has also been measured. The results of the study on the effect of different particle sizes B4C and Ni addition on reaction and densification in the stoichiometric reaction mixture as follows. With the coarse B4C (60-240 μm and <74 μm) particles the temperature required are higher for completion of the reaction (1600°C and above). The microstructural observation showed that the material is densified even in the presence of unreacted B4C particles. The composite made with 10-20 μm B4C and 1 wt% Ni showed completion of the reaction at 1200°C, whereas composite made without Ni showed unreacted B4C (∼3 vol%) and the final densities of both the composites are similar (5.44 g/cm3). Increase in the temperature to 1400°C resulted in the completion of the reaction (without Ni) accompanied with a relative density (RD) of 95%. The composites produced with and without Ni at 1600°C had similar densities of 6.13 g/cm3 and 6.11 g/cm3 respectively (~97.3% RD). The Zr-Ni phase diagram suggests that the addition of Ni helps in formation of Zr-Ni liquid at ~960°C and leads to an increase in the reaction rate up to 1200°C. Once the reaction is completed, not enough Zr is available to maintain the liquid phase and further densification occurs through solid state sintering. The grain sizes of ZrB2 and ZrC phases after 1200°C are 0.4 μm and 0.3 μm, which are much lower than those reported in literature (2-10 μm), and may be the reason for reducing the densification temperature to 1600°C for stoichiometric ZrB2-ZrC composites. The effect of excess Zr (0.5 mol), over and above the stoichiometric Zr-B4C powder mixture, on reaction and densification of the composites is as follows. The formation of ZrB2 and ZrC phases with unreacted starting Zr and B4C is observed at 1000°C and with increase in temperature to 1200°C the reaction is completed. Since microstructural characterization reveals no indication of free Zr, it is concluded that the excess Zr is incorporated by the formation of non-stoichiometric ZrC (ZrCx-0.67). This observation is supported by lattice parameter measurements of ZrC in the stoichiometric and non-stoichiometric composites which are lower than those reported in the literature. X-ray microanalysis of ZrC grains in the stoichiometric and non-stoichiometric composites using transmission electron microscopy confirmed the presence of carbon deficiency. The composite produced at 1200°C showed the density of 6.1 g/cm3 (~97% RD), whereas addition of Ni produced 6.2 g/cm3 (~99% RD). The reduction in densification temperature for the non-stoichiometric composites is due to the presence of ZrCx even in the absence of Ni. The mechanism of densification of the composites at 1200°C is attributed to the lowering of critical resolved shear stress with increasing non-stoichimetry in the ZrC, which leads to plastic deformation during RHP. An additional mechanism may be enhanced diffusion through the structural point defects created in ZrC. The hardness of the composites are 20-22 GPa, which is higher than those of reported in literature due to the presence of a dense and fine grain microstructure in the present work. In order to verify the role of non-stoichiometric ZrC the study was extended to produce monolithic ZrC using various C/Zr ratios (0.5-1). Here again, stoichiometric ZrC does not densify even at 1600°C, whereas non-stoichiometric ZrC can be densified at 1200°C. (b) ZrB2-SiC Composites: Since ZrB2 and ZrC do not have good oxidation resistance unless they are reinforced with SiC, the present study has been extended to produce ZrB2-SiC (25 vol%) composites using Zr-Si-B4C powder mixtures. The samples produced at 1000°C showed the formation of ZrB2, ZrC and Zr-Si compounds with unreacted Zr and B4C and as the temperature is increased to 1200°C only ZrB2 and SiC remained. A fine grain (~0.5 μm) microstructure has been observed at 1200°C. During RHP, it was observed that the formations of ZrC, Si-rich phases and fine grain size at low temperatures was responsible for attaining the high relative density at a temperature of ~1600°C. The relative densities of the composites produced with 1 wt% Ni at 40 MPa, 1600°C for 30 min is 97% RD, where as composites without Ni showed a small amount of partially reacted B4C; extending the holding time to 60 min eliminated the B4C and produced 98% RD. The hardness of the composites is 18-20 GPa. (c) ZrB2-ZrC-SiC Composites: Since ZrC plays a crucial role in densification of ZrB2-ZrC and ZrB2-SiC composites, the study has been extended to reduce the processing temperature for ZrB2-ZrCx-SiC composites by two methods. In one of the methods, Si is added to the non-stoichiometric 2.5Zr-B4C powder mixture which is resulted in ZrB2-ZrCx-SiC (15 vol%) composites with ~98% RD at 1600°C. In another method, SiC particulates are added to the non-stoichiometric 3.5Zr-B4C powder mixture to yield ZrB2-ZrCx-SiCp (5-15 vol%) composites at 1400°C. The density of the 5 vol% SiC composite is 99.9%, whereas addition of 15 vol% SiC reduced the density to 95.5% RD. The mechanisms of densification of the composites are similar to those observed in ZrB2-ZrC composites. The hardness of the composites is 18-20GPa (d) TiN-TiB2 Composites: ZrB2, ZrC, TiB2, and TiN are members of the same class of transition metal borides, carbides and nitrides; however, their densification mechanisms appear to be different. In earlier work, the RHP of stoichiometric 3Ti-2BN powder mixtures yielded dense composite at 1400-1600°C with 1 wt% Ni addition, whereas composites without Ni required at least 1850°C. The major contributor to better densification at 1600°C (with Ni) appeared to be the formation of local Ni-Ti liquid phase at ~942°C (Ti-Ni phase diagram). The present work explores the additional role of non-stoichiometry in this system. It is shown that Ti excess can lead to a further lowering of the RHP temperature, but with a different mechanism compared to the Zr-B4C system. Excess Ti allows the transient alloy phase to remain above the liquidus for a longer time, thereby permitting the attainment of a higher relative density. However, eventually, the excess Ti is converted into a non-stoichiometric nitride. Thus, the volume fraction of a potentially low melting phase is not increased in the final composite by this addition. The contrast between these two systems suggests the existence of two classes of refractory materials for which densification may be greatly accelerated in the presence of non-stoichiometry, either through the ability to absorb a liquid-phase producing metal into a refractory and hard ceramic structure or greater deformability. Conclusions: The study on RHP of ZrB2-ZrC, ZrB2-SiC, ZrB2-ZrC-SiC and TiN-TiB2 composites led to the following conclusions: • It has been possible to densify the ZrB2-ZrC composites to ~97 % RD by RHP of stoichiometric Zr-B4C powder mixture with or without Ni addition. The role of B4C particle size is important to complete both reaction as well as densification. • Excess Zr (0.5 mol) to stoichiometric 3Zr-B4C powder mixtures produces dense ZrB2-ZrCx composite with 99% RD at 1200°C. The densification mechanisms in these non-stoichiometric composites are enhanced diffusion due to fine microstructural scale / stoichiometric vacancies and plastic deformation. • In the case of ZrB2-SiC composites, the formation of a fine microstructure, and intermediate ZrC and Zr-Si compounds at the early stages plays a major role in densification. • Starting with non-stoichiometric Zr-B4C powder mixture, the dense ZrB2-ZrCx-SiC composites can be produced with SiC particulates addition at 1400°C. • Non-stoichiometry in TiN and ZrC is route to the increased densification of composites through enhanced liquid phase sintering in TiN based composites that contain Ni and through plasticity of a carbon-deficient carbide in ZrC based composites.
8

Influence de la nature des interfaces carbonées au sein des composites SiC/SiC à renfort Hi-Nicalon S et Tyranno SA3 sur leur comportement mécanique / Influence of carbone interphases in SiC/SiC composites based on Hi-Nicalon S and Tyranno SA3 fibers

Fellah, Clémentine 20 October 2017 (has links)
Les composites SiC/SiC à interphase pyrocarbone (PyC) sont des candidats prometteurs en tant que matériau de gainage du combustible et de structure des réacteurs à neutrons rapides, constituant une alternative aux alliages métalliques. Leur comportement sous irradiation neutronique et leur caractère réfractaire sont de sérieux atouts en milieu irradiant. Néanmoins, les fibres et la matrice en carbure de silicium (SiC) sont, individuellement, des céramiques fragiles. L’intégrité des structures ne peut donc être assurée que si le composite acquiert une tolérance aux déformations. Cette tolérance n’est possible que grâce à la présence d’une interphase de pyrocarbone, entre la matrice et les fibres, assurant le rôle de déviateur de fissures. La capacité des composites SiC/SiC à résister à l’endommagement est dictée par le couplage fibre/matrice (F/M). L’intensité de ce couplage peut être influencée par de nombreux paramètres, tels que la rugosité et la physicochimie de surface du renfort. Les travaux faisant l’objet de cette thèse ont mis en évidence une couche de carbone en surface des fibres par microscopie électronique en transmission à haute résolution (METHR) et via des analyses physicochimiques de surface. Les caractéristiques de cette couche de carbone varient avec le procédé de fabrication des fibres. Son impact sur le couplage F/M a été appréhendé par l’observation des mécanismes locaux d’endommagement. La décohésion fibre/matrice a été étudiée en analysant par METHR les régions interfaciales des composites SiC/SiC ayant subi un essai mécanique. La compréhension de l’origine de cette couche de surface de fibres a permis de mieux connaitre les mécanismes locaux d’interaction. Ces mécanismes dépendent de la structure du carbone de surface des fibres dont découle le mode d’adhésion entre ce carbone de surface et l’interphase de pyrocarbone. Un traitement de surface sur un type de fibres a alors été développé, suggérant une légère amélioration du comportement mécanique des composites SiC/SiC élaborés à partir de ces renforts fibreux. / SiC/SiC composites including the third generation SiC fibers with pyrocarbon interphase (PyC) are promising candidates to improve the safety of nuclear reactors, especially for core materials such as cladding and to replace metallic alloys for these applications. Their intrinsic refractory properties, their neutron transparency and their microstructural stability when irradiated or exposed to high temperatures make them attractive for nuclear applications. However SiC fibers and SiC matrix are brittle ceramics. The integrity of the structures can be fulfilled only if the composite is damage tolerant and can acquire a pseudo-ductile mechanical behavior. An interphase is deposited between the fibers and the matrix to provide this damage tolerance of SiC/SiC composites.The ability of SiC/SiC composites to sustain damage is dictated by the fiber/matrix (F/M) coupling mode. The intensity of this coupling can be related to many parameters such as the roughness and the chemistry of the surface of the reinforcement. A carbon layer on the fiberssurface was highlighted by High Resolution Transmission Electronic Microscopy (HRTEM) and by physico-chemical analyses. The characteristics of this carbon layer vary with the fabrication process of the fibers. The impact of this carbon layer on the F/M coupling was investigated by the observation of the local damage mechanisms. To elucidate the local bonding modes governing the damage mechanisms at the F/M interface of these SiC/SiC composites, macroscopic mechanical tests have been coupled with observations of structural modifications occurring in the interface region after loading. Understanding the origin of this carbon layer allowed elucidating the local interaction mechanisms according to these studied materials. These mechanisms depend on the carbon structure of the SiC fibers surface which in turn governs the adhesion between this carbon and the PyC interphase. Thanks to this study, a surface treatment on fibers was developed to optimize the mechanical behavior of SiC/SiC composites, whatever the fibrous reinforcement chosen.
9

Prediction of properties and optimal design of microstructure of multi-phase and multi-layer C/SiC composites

Xu, Yingjie 08 July 2011 (has links) (PDF)
Carbon fiber-reinforced silicon carbide matrix (C/SiC) composite is a ceramic matrixcomposite (CMC) that has considerable promise for use in high-temperature structuralapplications. In this thesis, systematic numerical studies including the prediction of elasticand thermal properties, analysis and optimization of stresses and simulation ofhigh-temperature oxidations are presented for the investigation of C/SiC composites.A strain energy method is firstly proposed for the prediction of the effective elastic constantsand coefficients of thermal expansion (CTEs) of 3D orthotropic composite materials. Thismethod derives the effective elastic tensors and CTEs by analyzing the relationship betweenthe strain energy of the microstructure and that of the homogenized equivalent model underspecific thermo-elastic boundary conditions. Different kinds of composites are tested tovalidate the model.Geometrical configurations of the representative volume cell (RVC) of 2-D woven and 3-Dbraided C/SiC composites are analyzed in details. The finite element models of 2-D wovenand 3-D braided C/SiC composites are then established and combined with the stain energymethod to evaluate the effective elastic constants and CTEs of these composites. Numericalresults obtained by the proposed model are then compared with the results measuredexperimentally.A global/local analysis strategy is developed for the determination of the detailed stresses inthe 2-D woven C/SiC composite structures. On the basis of the finite element analysis, theprocedure is carried out sequentially from the homogenized composite structure of themacro-scale (global model) to the parameterized detailed fiber tow model of the micro-scale(local model). The bridge between two scales is realized by mapping the global analysisresult as the boundary conditions of the local tow model. The stress results by global/localmethod are finally compared to those by conventional finite element analyses.Optimal design for minimizing thermal residual stress (TRS) in 1-D unidirectional C/SiCcomposites is studied. The finite element models of RVC of 1-D unidirectional C/SiCIIcomposites with multi-layer interfaces are generated and finite element analysis is realized todetermine the TRS distributions. An optimization scheme which combines a modifiedParticle Swarm Optimization (PSO) algorithm and the finite element analysis is used toreduce the TRS in the C/SiC composites by controlling the multi-layer interfaces thicknesses.A numerical model is finally developed to study the microstructure oxidation process and thedegradation of elastic properties of 2-D woven C/SiC composites exposed to air oxidizingenvironments at intermediate temperature (T<900°C). The oxidized RVC microstructure ismodeled based on the oxidation kinetics analysis. The strain energy method is then combinedwith the finite element model of oxidized RVC to predict the elastic properties of composites.The environmental parameters, i.e., temperature and pressure are studied to show theirinfluences upon the oxidation behavior of C/SiC composites.
10

Particulate Aluminium Matrix composite Material (Al-12 Si-SiCp) For I.C. Engine Piston Application

Sundararajan, S 02 1900 (has links) (PDF)
No description available.

Page generated in 0.051 seconds