• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sign Pattern Matrices and Semirings

Mohindru, Preeti 15 November 2011 (has links)
Sign pattern theory examines what can be said about a matrix if one knows the signs of all or some of its entries but not the exact values. Since all we know is the sign of each entry, we can write these sign patterns as matrices whose entries come from the set {+1, -1, 0, #}, where # is used for an unknown sign. Semirings satisfy all properties of rings with unity except the existence of additive inverses. The set {+1, -1, 0, #} can be viewed as a commutative semiring in natural way. In the thesis, we give a semiring version of the Cayley-Dickson construction which allows one to construct the sign pattern semiring from the Boolean semiring. We use tools from Boolean matrices to study sign nonsingular (SNS) matrices. We also investigate different notions of rank of matrices over semirings. For these rank functions we simplify proofs of classical inequalities for the sum and the product of matrices using the semiring versions of the Cauchy-Binet and Laplace theorems. For matrices over the sign pattern semiring, the minimum rank of the sign pattern is compared with the other versions of the rank. We also characterize irreducible powerful sign pattern matrices and investigate the period and base of an SNS matrix.
2

On the 4 by 4 Irreducible Sign Pattern Matrices that Require Four Distinct Eigenvalues

Kim, Paul J 11 August 2011 (has links)
A sign pattern matrix is a matrix whose entries are from the set {+,-,0}. For a real matrix B, sgn(B) is the sign pattern matrix obtained by replacing each positive(respectively, negative, zero) entry of B by + (respectively, -, 0). For a sign pattern matrix A, the sign pattern class of A, denoted Q(A), is defined as {B: sgn(B) = A}. An n by n sign pattern matrix A requires all distinct eigenvalues if every real matrix whose sign pattern is represented by A has n distinct eigenvalues. In this thesis, a number of sufficient and/or necessary conditions for a sign pattern to reuiqre all distinct eigenvalues are reviewed. In addition, for n=2 and 3, the n by n sign patterns that require all distinct eigenvalues are surveyed. We determine most of the 4 by 4 irreducible sign patterns that require four distinct eigenvalues.

Page generated in 0.0904 seconds