• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Steiner network construction for signal net routing with double-sided timing constraints

Li, Qiuyang 02 June 2009 (has links)
Compared to conventional Steiner tree signal net routing, non-tree topology is often superior in many aspects including timing performance, tolerance to open faults and variations. In nano-scale VLSI designs, interconnect delay is a performance bottleneck and variation effects are increasingly problematic. Therefore the advantages of non-tree topology are particularly appealing for timing critical net routings in nano-scale VLSI designs. We propose Steiner network construction heuristics which can generate either tree or non-tree of signal net with different slack wirelength tradeoffs, and handle both long path and short path constraints. Extensive experiments in different scenarios show that our heuristics usually improve timing slack by hundreds of pico seconds compared to traditional tree approaches while increasing only slightly in wirelength. These results show that our algorithm is a very promising approach for timing critical net routings.
2

Steiner network construction for signal net routing with double-sided timing constraints

Li, Qiuyang 02 June 2009 (has links)
Compared to conventional Steiner tree signal net routing, non-tree topology is often superior in many aspects including timing performance, tolerance to open faults and variations. In nano-scale VLSI designs, interconnect delay is a performance bottleneck and variation effects are increasingly problematic. Therefore the advantages of non-tree topology are particularly appealing for timing critical net routings in nano-scale VLSI designs. We propose Steiner network construction heuristics which can generate either tree or non-tree of signal net with different slack wirelength tradeoffs, and handle both long path and short path constraints. Extensive experiments in different scenarios show that our heuristics usually improve timing slack by hundreds of pico seconds compared to traditional tree approaches while increasing only slightly in wirelength. These results show that our algorithm is a very promising approach for timing critical net routings.

Page generated in 0.0576 seconds