• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-dimensional parametric estimation : two-dimensional sharpening by predictive bandwidth extrapolation and fast algorithms for three dimensional autoregressive estimation /

Liew, Ji Seok. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 84-87). Also available on the World Wide Web.
2

High resolution source localization in near-field sensor arrays by MVDR technique /

Handfield, Joseph J. January 2007 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2007. / Typescript. Includes bibliographical references (leaves 63-66).
3

Multichannel synthetic aperture radar

Rosenberg, Luke January 2007 (has links)
"In this thesis, the two problems of image formation for a Multichannel Synthetic Aperture Radar (MSAR) and suppressing interferences while forming a good quality image have been addressed. For the first problem, three wavefront reconstruction algorithms were presneted based on the multichannel Matched Filter (MF) imagining equation which demonstrated differing levels of performance and accuracy. A fourth algorithm known as multichannel backprojection was also presented to provide comparative quality with a reduced computational load. To address the second problem, a detailed jammer model was described and tested with a multichannel imaging algorithm to demonstrate the effect of hot-clutter on a SAR image. Multi-channel imaging and optimal slow-time Space Time Adaptive Processing (STAP) were shown to only partially suppress the hot-clutter interference, while optimal fast-time STAP demonstrated a much greater performance." --p. 185 of source document. / Thesis (Ph.D.)--School of Electrical and Electronic Engineering, 2007.

Page generated in 0.1034 seconds