Spelling suggestions: "subject:"signatures (criting)"" "subject:"signatures (awriting)""
1 |
Handwritten signature verification using complementary statistical models /McCabe, Alan. January 2003 (has links)
Thesis (Ph.D.) - James Cook University, 2003. / Typescript (photocopy) Bibliography: leaves 181-196.
|
2 |
Digital signaturesSwanepoel, Jacques Philip 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2015 / AFRIKAANSE OPSOMMING : In hierdie verhandeling stel ons 'n nuwe strategie vir outomatiese handtekening-verifikasie voor. Die voorgestelde raamwerk gebruik 'n skrywer-onafhanklike benadering tot handtekening-
modellering en is dus in staat om bevraagtekende handtekeninge, wat aan enige
skrywer behoort, te bekragtig, op voorwaarde dat minstens een outentieke voorbeeld vir
vergelykingsdoeleindes beskikbaar is. Ons ondersoek die tradisionele statiese geval (waarin
'n bestaande pen-op-papier handtekening vanuit 'n versyferde dokument onttrek word),
asook die toenemend gewilde dinamiese geval (waarin handtekeningdata outomaties tydens
ondertekening m.b.v. gespesialiseerde elektroniese hardeware bekom word). Die
statiese kenmerk-onttrekkingstegniek behels die berekening van verskeie diskrete Radontransform
(DRT) projeksies, terwyl dinamiese handtekeninge deur verskeie ruimtelike en
temporele funksie-kenmerke in die kenmerkruimte voorgestel word. Ten einde skryweronafhanklike
handtekening-ontleding te bewerkstellig, word hierdie kenmerkstelle na 'n
verskil-gebaseerde voorstelling d.m.v. 'n geskikte digotomie-transformasie omgeskakel.
Die klassikasietegnieke, wat vir handtekeking-modellering en -verifikasie gebruik word,
sluit kwadratiese diskriminant-analise (KDA) en steunvektormasjiene (SVMe) in. Die
hoofbydraes van hierdie studie sluit twee nuwe tegnieke, wat op die bou van 'n robuuste
skrywer-onafhanklike handtekeningmodel gerig is, in. Die eerste, 'n dinamiese tydsverbuiging
digotomie-transformasie vir statiese handtekening-voorstelling, is in staat om vir redelike
intra-klas variasie te kompenseer, deur die DRT-projeksies voor vergelyking nie-lineêr
te belyn. Die tweede, 'n skrywer-spesieke verskil-normaliseringstrategie, is in staat om
inter-klas skeibaarheid in die verskilruimte te verbeter deur slegs streng relevante statistieke
tydens die normalisering van verskil-vektore te beskou. Die normaliseringstrategie is generies
van aard in die sin dat dit ewe veel van toepassing op beide statiese en dinamiese
handtekening-modelkonstruksie is. Die stelsels wat in hierdie studie ontwikkel is, is spesi
ek op die opsporing van hoë-kwaliteit vervalsings gerig. Stelselvaardigheid-afskatting
word met behulp van 'n omvattende eksperimentele protokol bewerkstellig. Verskeie groot
handtekening-datastelle is oorweeg. In beide die statiese en dinamiese gevalle vaar die
voorgestelde SVM-gebaseerde stelsel beter as die voorgestelde KDA-gebaseerde stelsel.
Ons toon ook aan dat die stelsels wat in hierdie studie ontwikkel is, die meeste bestaande
stelsels wat op dieselfde datastelle ge evalueer is, oortref. Dit is selfs meer belangrik om
daarop te let dat, wanneer hierdie stelsels met bestaande tegnieke in die literatuur vergelyk
word, ons aantoon dat die gebruik van die nuwe tegnieke, soos in hierdie studie voorgestel,
konsekwent tot 'n statisties beduidende verbetering in stelselvaardigheid lei. / ENGLISH ABSTRACT : In this dissertation we present a novel strategy for automatic handwritten signature verification. The proposed framework employs a writer-independent approach to signature
modelling and is therefore capable of authenticating questioned signatures claimed to belong
to any writer, provided that at least one authentic sample of said writer's signature
is available for comparison. We investigate both the traditional off-line scenario (where
an existing pen-on-paper signature is extracted from a digitised document) as well as the
increasingly popular on-line scenario (where the signature data are automatically recorded
during the signing event by means of specialised electronic hardware). The utilised off-line
feature extraction technique involves the calculation of several discrete Radon transform
(DRT) based projections, whilst on-line signatures are represented in feature space by
several spatial and temporal function features. In order to facilitate writer-independent
signature analysis, these feature sets are subsequently converted into a dissimilarity-based
representation by means of a suitable dichotomy transformation. The classification techniques
utilised for signature modelling and verification include quadratic discriminant analysis
(QDA) and support vector machines (SVMs). The major contributions of this study
include two novel techniques aimed towards the construction of a robust writer-independent
signature model. The first, a dynamic time warping (DTW) based dichotomy transformation
for off-line signature representation, is able to compensate for reasonable intra-class
variability by non-linearly aligning DRT-based projections prior to matching. The second,
a writer-specific dissimilarity normalisation strategy, improves inter-class separability in
dissimilarity space by considering only strictly relevant dissimilarity statistics when normalising
the dissimilarity vectors belonging to a specific individual. This normalisation
strategy is generic in the sense that it is equally applicable to both off-line and on-line
signature model construction. The systems developed in this study are specifically aimed
towards skilled forgery detection. System proficiency estimation is conducted using a rigorous
experimental protocol. Several large signature corpora are considered. In both the
off-line and on-line scenarios, the proposed SVM-based system outperforms the proposed
QDA-based system. We also show that the systems proposed in this study outperform
most existing systems that were evaluated on the same data sets. More importantly, when
compared to state-of-the-art techniques currently employed in the literature, we show that
the incorporation of the novel techniques proposed in this study consistently results in a
statistically significant improvement in system proficiency.
|
3 |
Verification of off-line handwritten signaturesFang, Bin, 房斌 January 2001 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
|
4 |
Digital signature schemes : general framework and fail stop signatures /Pfitzmann, Birgit. January 1996 (has links)
Univ., Diss.--Hildesheim, 1993. / Literaturverz. S. 371 - 385.
|
5 |
Die Unterfertigung deutscher Könige von der Karolingerzeit bis zum Interregnum durch Kreuz und Unterschrift Beiträge zur Geschichte und zur Technik der Unterfertigung im Mittelalter /Schlögl, Waldemar. January 1978 (has links)
Habilitationsschrift--Munich, 1975. / Includes bibliographical references (p. 260-273).
|
6 |
Off-line signature verificationCoetzer, Johannes 03 1900 (has links)
Thesis (PhD (Mathematical Sciences))--University of Stellenbosch, 2005. / A great deal of work has been done in the area of off-line signature verification over the
past two decades. Off-line systems are of interest in scenarios where only hard copies of
signatures are available, especially where a large number of documents need to be authenticated.
This dissertation is inspired by, amongst other things, the potential financial
benefits that the automatic clearing of cheques will have for the banking industry.
|
7 |
Handwritten signature verification using locally optimized distance-based classification.Moolla, Yaseen. 28 November 2013 (has links)
Although handwritten signature verification has been extensively researched, it has not achieved optimum accuracy rate. Therefore, efficient and accurate signature verification techniques are required since signatures are still widely used as a means of personal verification. This research work presents efficient distance-based classification techniques as an alternative to supervised learning classification techniques (SLTs). Two different feature extraction techniques were used, namely the Enhanced Modified Direction Feature (EMDF) and the Local Directional Pattern feature (LDP). These were used to analyze the effect of using several different distance-based classification techniques. Among the classification techniques used, are the cosine similarity measure, Mahalanobis, Canberra, Manhattan, Euclidean, weighted Euclidean and fractional distances. Additionally, the novel weighted fractional distances, as well as locally optimized resampling of feature vector sizes were tested. The best accuracy was achieved through applying a combination of the weighted fractional distances and locally optimized resampling classification techniques to the Local Directional Pattern feature extraction. This combination of multiple distance-based classification techniques achieved accuracy rate of 89.2% when using the EMDF feature extraction technique, and 90.8% when using the LDP feature extraction technique. These results are comparable to those in literature, where the same feature extraction techniques were classified with SLTs. The best of the distance-based classification techniques were found to produce greater accuracy than the
SLTs. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2012.
|
8 |
Legally resilient signatures a middle-age approach to a digital age problem /Rice, Matthew E. Burmester, Mike. January 2005 (has links)
Thesis (M.S.)--Florida State University, 2005. / Advisor: Dr. Mike Burmester, Florida State University, College of Arts and Sciences, Dept. of Computer Science. Title and description from dissertation home page (viewed June 13, 2005). Document formatted into pages; contains viii, 35 pages. Includes bibliographical references.
|
9 |
Handwritten signature verification : a hidden Markov model approachLe Riche, Pierre (Pierre Jacques) 12 1900 (has links)
Thesis (MEng)--University of Stellenbosch, 2000. / ENGLISH ABSTRACT: Handwritten signature verification (HSV) is the process through which handwritten
signatures are analysed in an attempt to determine whether the person who made the
signature is who he claims to be.
Banks and other financial institutions lose billions of rands annually to cheque fraud
and other crimes that are preventable with the aid of good signature verification
techniques. Unfortunately, the volume of cheques that are processed precludes a
thorough HSV process done in the traditional manner by human operators.
It is the aim of this research to investigate new methods to compare signatures
automatically, to eventually speed up the HSV process and improve on the accuracy
of existing systems.
The new technology that is investigated is the use of the so-called hidden Markov
models (HMMs). It is only quite recently that the computing power has become
commonly available to make the real-time use of HMMs in pattern recognition a
possibility.
Two demonstration programs, SigGrab and Securitlheque, have been developed that
make use of this technology, and show excellent improvements over other techniques
and competing products. HSV accuracies in excess of99% can be attained. / AFRIKAANSE OPSOMMING: Handgeskrewe handtekening verifikasie (HHV) is die proses waardeur handgeskrewe
handtekeninge ondersoek word in 'n poging om te bevestig of die persoon wat die
handtekening gemaak het werklik is wie hy voorgee om te wees.
Banke en ander finansiele instansies verloor jaarliks biljoene rande aan tjekbedrog en
ander misdrywe wat voorkom sou kon word indien goeie metodes van handtekening
verifikasie daargestel kon word. Ongelukkig is die volume van tjeks wat hanteer word
so groot, dat tradisionele HHV deur menslike operateurs 'n onbegonne taak is.
Dit is die doel van hierdie navorsmg om nuwe metodes te ondersoek om
handtekeninge outomaties te kan vergelyk en so die HHV proses te bespoedig en ook
te verbeter op die akkuraatheid van bestaande stelsels.
Die nuwe tegnologie wat ondersoek is is die gebruik van die sogenaamde verskuilde
Markov modelle (VMMs). Dit is eers redelik onlangs dat die rekenaar
verwerkingskrag algemeen beskikbaar geraak het om die intydse gebruik van VMMs
in patroonherkenning prakties moontlik te maak.
Twee demonstrasieprogramme, SigGrab en SecuriCheque, is ontwikkel wat gebruik
maak van hierdie tegnologie en toon uitstekende verbeterings teenoor ander tegnieke
en kompeterende produkte. 'n Akkuraatheid van 99% of hoer word tipies verkry.
|
10 |
Handwritten signature verification using hidden Markov modelsSindle, Colin 12 1900 (has links)
Thesis (MScEng)--University of Stellenbosch, 2003. / ENGLISH ABSTRACT: Handwritten signatures are provided extensively to verify identity for all types of transactions
and documents. However, they are very rarely actually verified. This is because of
the high cost of training and employing enough human operators (who are still fallible) to
cope with the demand. They are a very well known, yet under-utilised biometric currently
performing far below their potential. We present an on-line/dynamic handwritten signature
verification system based on Hidden Markov Models, that far out performs human
operators in both accuracy and speed. It uses only the local signature features-sampled
from an electronic writing tablet-after some novel preprocessing steps, and is a fully
automated system in that there are no parameters that need to be manually fine-tuned
for different users. Novel verifiers are investigated which attain best equal error rates of
between 2% and 5% for different types of high quality deliberate forgeries, and take a
fraction of a second to accept or reject an identity claim on a 700 MHz computer. / AFRIKAANSE OPSOMMING: Geskrewe handtekeninge word gereeld gebruik om die identiteit van dokumente en transaksies
te bevestig. Aangesien dit duur is in terme van menslike hulpbronne, word die integrit
eit daarvan selde nagegaan. Om handtekeninge deur menslike operateurs te verifieër.
is ook feilbaar-lOO% akkurate identifikasie is onrealisties. Handtekeninge is uiters
akkurate en unieke identifikasie patrone wat in die praktyk nie naastenby tot hul volle
potensiaal gebruik word nie. In hierdie navorsing gebruik ons verskuilde Markov modelle
om dinamiese handtekeningherkenningstelsels te ontwikkel wat, in terme van spoed en
akkuraatheid heelwat meer effektief as operateurs is. Die stelsel maak gebruik van slegs
lokale handtekening eienskappe (en verwerkings daarvan) soos wat dit verkry word vanaf
'n elektroniese skryftablet. Die stelsel is ten volle outomaties en geen parameters hoef
aangepas te word vir verskillende gebruikers nie. 'n Paar tipes nuwe handtekeningverifieërders
word ondersoek en die resulterende gelykbreekpunt vir vals-aanvaardings- en
vals-verwerpingsfoute lê tussen 2% en 5% vir verskillende tipes hoë kwaliteit vervalsde
handtekeninge. Op 'n tipiese 700 MHz verwerker word die identiteit van 'n persoon ill
minder as i sekonde bevestig.
|
Page generated in 0.0649 seconds