• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of an enzymatic cascade for the production of 5- hydroxymethylfurfurylamine / Undersökning av en enzymatisk kaskad för produktionen av 5-hydroximetylfurfurylamin

Chandrakumaran, Sajitha January 2023 (has links)
Biokatalys medför ett alternativt tillvägagångsätt för att kunna utforska och utveckla kemiskt syntetiserade vägar för produktionen av eftertraktade kemikalier, där hållbarhet och miljön tas till beaktan. I denna studie undersöktes potentialen av en enzymatisk kaskad för produktion av 5-hydroximetylfurfurylamin (HMFA). HMFA är en förening med tillämpningar inom flera industrier som till exempel jordbruks- och läkemedelsindustrin. Den enzymatiska kaskaden består av två reaktioner, varav den första involverar dekarboxylering av lysin med användning av lysindekarboxylas för att producera en så kallad ”smart amindonator” kadaverin. Den andra reaktionen i kaskaden består utav ett transaminas från Silicibacter pomeroyi (SpTA) som konverterarar 5-hydroximetylfurfuryl (HMF) till HMFA med hjälp av det framkallade kadaverinet från den första reaktionen i kaskaden. En enzymatisk kaskad tillåter mildare reaktionsbetingelser, mindre avfall och energisnål användning som därmed minskar miljöpåverkan samtidigt som det beaktar några av dem 12 principerna av grön kemi. Det uppstod utmaningar som hindrade slutförandet av den enzymatiska kaskaden, men trots detta erhölls värdefulla insikter. Denna studie belyser de invecklade reaktionsmekanismerna och några av de svårigheterna med immobilisering av enzym på EziG bärare. Trots att den avsedda kaskaden inte slutfördes, gav lärdomarna nya perspektiv samt potentiella områden att fortsätta undersöka för framtida framsteg inom biokatalys. / Biocatalysis is a promising alternative to chemical synthesis routes for high value chemicals which considers the sustainability and environmental aspect. In this study the feasibility of utilizing an enzymatic cascade for the production of 5-hydroxymethylfurfurylamine (HMFA) was explored. HMFA is a compound with diverse applications in industries such as agriculture and pharmaceuticals. The cascade consists of two main reactions, the first of which involves the decarboxylation of lysine using a lysine decarboxylase to produce cadaverine. The cadaverine produced will then be utilized as an amine donor in the second reaction, which involves the use of a transaminase derived from Silicibacter pomeroyi (SpTA) together with 5-hydroxymethylfurfural (HMF). This cascade considers the principals of green chemistry such as milder reaction conditions and less waste, hence aiming to reduce the environmental impact. Although there were challenges preventing the completion of the enzymatic cascade, valuable insights were gained. The contribution of this study sheds light on the intricate reaction mechanisms and some of the key difficulties with enzyme immobilisation. While the intended cascade was not finalized, the lessons learned will provide for new perspectives and potential future advancements in biocatalysis.
2

Enhancing Thermostability of Amine Transaminase from Silicibacter pomeroyi / Förbättring av Termostabiliteten hos Amintransaminas från Silicibacter pomeroyi

Sahlberg, Viktor January 2024 (has links)
Användningen av biokatalysatorer, särskilt enzymer, inom kemikalie- och läkemedelsindustrin erbjuder betydande fördelar jämfört med de traditionella kemo-katalytiska metoderna som historiskt har dominerat industrin. En viktig klass av enzymer, transaminaser, spelar en central roll i tillverkningen av kirala aminer, som utgör grundläggande byggstenar i dessa industriella sektorer. Denna studie är inriktad på ett specifikt amin transaminas från Silicibacter pomeroyi. Tidigare har detta enzym visat förmåga att katalysera en mängd olika reaktioner för produktion av kirala aminer, men för att realisera dess fulla potential inom industriella tillämpningar krävs förbättrad stabilitet vid högre temperaturer. I motsats till de vanligt förekommande metoderna för proteinteknik, såsom rationell design och riktad evolution, används i denna studie släktsekvensrekonstruktion för att skapa mer temperaturtåliga varianter av detta enzym. Tidigare användning av denna metod har visat sig kunna generera proteiner med högre temperaturtålighet. Genom denna metod, där förfäder till detta enzym återskapas utifrån bevarade sekvenser, förväntas generering av varianter som kan bibehålla sin funktion vid högre temperaturer under en längre tid. Genom att utforska denna alternativa strategi för proteinteknik strävar studien efter att ge mer robusta biokatalysatorer för industriella tillämpningar. Utfallet från denna studie visade att två förfäder hade ökad termostabilitet. Detta visade sig dels genom analys av T5015 som påvisade en 3.9 och 6 C° förbättring för respektive förfader. Vidare påvisade t1/2 mätningar att dessa enzymer kunde utstå 2.06 till 3.72 gånger så lång tid vid 55 C° innan de inaktiverades. De påvisade dock lägre specifik aktivitet vid rumstemperatur, där en bidragande faktor till detta var att enbart en liten fraktion av förfäderna är korrekt veckade. Detta visar att det är nödvändigt med fortsatta förbättringar och fortsatta studier kring substratacceptans och stabilitet i olika lösningsmedel. Sammanfattningsvis påvisar resultaten att släktsekvensrekonstruktion är en proteinteknik som fungerar för att skapa proteiner med ökad termostabilitet och bör ses som ett mer självklart alternativ till riktad evolution och rationell design. / The utilisation of biocatalysts, particularly enzymes, in chemical and pharmaceutical industries presents significant advantages over the traditional chemocatalytic methods that historically dominated the industry. A crucial class of enzymes, transaminases, play a central role in the production of chiral amines, fundamental building blocks in these industrial sectors. This study focuses on a specific amine transaminase from Silicibacter pomeroyi. While this enzyme has previously demonstrated the ability to catalyse a variety of reactions for chiral amine production, realising its full potential in industrial applications requires enhanced stability at higher temperatures. In contrast to commonly employed protein engineering methods such as rational design and directed evolution, this study utilises ancestral sequence reconstruction to generate more temperature-resistant variants of this enzyme. Previous applications of this method have shown promising results in generating proteins with increased thermal stability. Through this approach, wherein ancestors of this enzyme are recreated from extant sequences, it is expected that variants capable of maintaining function at higher temperatures will be produced. By exploring this alternative strategy for protein engineering, the study aims to provide more robust biocatalysts for industrial applications. The outcome of this study is that two ancestors exhibited increased thermostability. This was evidenced by the analysis of T5015, which showed an improvement of 3.9 and 6 °C for each respective ancestor. Furthermore, t1/2 measurements indicated that they remained active for 2.06 to 3.72 fold longer at 55 °C before becoming inactive. However, they exhibited lower specific activity at room temperature, partially due to only a small fraction of the ancestral protein samples being properly folded. This suggests further improvements and continued investigations into substrate acceptance and stability in different solvents are required. In conclusion, this study demonstrates that ancestral sequence reconstruction is a protein engineering technique effective in enhancing protein thermostability and should be considered a more viable alternative to directed evolution and rational design.

Page generated in 0.0804 seconds