• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 9
  • 9
  • 8
  • 7
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Impact of Nanostructured Templates and Additives on the Performance of Si Electrodes and Solid Polymer Electrolytes for Advanced Battery Applications

Fan, Jui Chin 01 July 2018 (has links)
The primary objectives of this research are: (1) use a hierarchical structure to study electrode materials for next-generation lithium-ion batteries (LIBs) and (2) understand the fundamentals and utility of solid polymer electrolytes (SPEs) with the addition of halloysite nanotubes (HNTs) for battery applications. Understanding the fundamental principles of electrode and electrolyte materials allows for the development of high-performance LIBs. The contributions of this dissertation are described below. Encapsulated Si-VACNT Electrodes. Two hurdles prevent Si-based electrodes from mass production. First, bulk Si undergoes volume expansion up to 300%. Second, a solid-electrolyte interphase (SEI) forms between the interface of the electrolyte and electrode, which consumes battery capacity and creates more resistance at the interface. Si volume changes were overcome by depositing silicon on vertically-aligned carbon nanotubes (VACNTs). Encapsulating the entire Si-VACNT electrode surface with carbon was used to mitigate SEI formation. Although SEI formation was reduced by the encapsulation layer, capacity fade was still observed for encapsulated electrodes, indicating that SEI formation was not the primary factor affecting capacity fade. Additionally, the impact of the encapsulation layer on Li transport was examined. Two different transport directions and length scales were relevant””(1) radial transport of Li in/out of each Si-coated nanotube (~40 nm diameter) and (2) Li transport along the length of the nanotubes (~10 µm height). Experimental results indicated that the height of the Si-VACNT electrodes did not limit Li transport, even though that height was orders of magnitude greater than the diameter of the tubes. Simulation and experimental data indicated that time constant for Li diffusion into silicon was slow, even though the diffusion distance was short relative to the tube height. Other factors such as diffusion-induced stress likely had a significant impact on diffusion through the thin silicon layer. Solid Polymer Electrolytes. A thorough understanding of the relationships between physical, transport, and electrochemical properties was studied. HNT addition to polyethylene oxide (PEO) electrolytes not only improved the physical properties, such as reduction of the crystallinity of PEO, but also enhanced transport properties like the salt diffusivity. The processing steps were important for achieving enhanced properties. Moreover, HNTs were found to stabilize the interfacial properties of the SPE films during cycling. Specifically, HNT-containing SPE films were successfully cycled at room temperature, which may have important implications for SPE-based batteries.
2

REDUCED SILICA GEL FOR SILICON ANODE BASED LI-ION BATTERY AND GOLD NANOPARTICLE AT MOLYBDENUM DISULFIDE PHOTO CATALYST FOR SELECTIVE OXIDATION REACTION

Sun, Yuandong January 2017 (has links)
No description available.
3

A SILICON SECONDARY PARTICLES FOR ANODES OF LITHIUM-ION BATTERIES

Wang, Miaoyu 30 October 2020 (has links)
No description available.
4

Investigation of Silicon-Based and Multicomponent Electrodes for High Energy Density Li-ion Batteries

Sturman, James 29 November 2023 (has links)
Li-ion batteries have enabled the widespread adoption of portable electronics and are becoming the technology of choice for electric vehicles and grid storage. One of the most promising ways to accommodate this demand is to increase the energy density and cycle life of battery electrode materials. Key strategies promoted in the literature include the use of nickel-rich cathodes as well as high-capacity anodes like silicon and lithium metal. While these materials enable a high energy density, this advantage is often counterbalanced with deficits such as poor stability and high cost. Multicomponent electrodes refer to strategies that try to leverage the relative advantages of different materials to offer an attractive compromise of energy density, cost, and cycle life. This thesis has investigated various aspects of multicomponent electrodes with a special emphasis on silicon-based anodes and high-entropy materials. Silicon (Si) is the second-most abundant element on earth and has one of the highest gravimetric capacities. However, silicon anodes are notorious for their poor cycle stability. Herein, improvements in the stability of silicon-based electrodes are achieved with multicomponent composite strategies involving the use of nanostructured spherical silicon. The nanosilicon is studied in high-fraction (80 wt% Si) and low-fraction (≤20 wt% Si) formulations to investigate both failure mechanisms and practical capacity retention, respectively. Composite strategies in which nanosilicon is encapsulated within a Li₄Ti₅O₁₂ ceramic or MOF-derived carbon matrix are shown to deliver superior capacity retention compared to simple composites of silicon and graphite. Considerable attention is given to the selection of a water-soluble binder and its role in electrochemical stability and electrode cohesion in high-loading silicon electrodes. It is found that unmodified high-molecular-weight sodium carboxymethyl cellulose offers better capacity retention compared to xanthan gum or low-molecular-weight binders. The high-entropy design strategy has created a diverse and largely unexplored set of multicomponent oxides and alloys with great potential as electrode materials. This strategy is applied to the family of layered cathodes, where the synthesis and electrochemical properties of the best-performing Li(NiCoMnTiFe)₁O₂ are reported. Despite the low Ni content, the cathode delivers a high initial capacity with unique overlithiation stability despite being charged to 4.4 V. Throughout the thesis, Operando XRD is used to reveal important insight into the lithiation mechanisms of the multicomponent electrodes including intercalation-based graphite, alloying-based silicon, and a novel organic azaacene.
5

Study on Buckling of Stiff Thin Films on Soft Substrates as Functional Materials

January 2014 (has links)
abstract: In engineering, buckling is mechanical instability of walls or columns under compression and usually is a problem that engineers try to prevent. In everyday life buckles (wrinkles) on different substrates are ubiquitous -- from human skin to a rotten apple they are a commonly observed phenomenon. It seems that buckles with macroscopic wavelengths are not technologically useful; over the past decade or so, however, thanks to the widespread availability of soft polymers and silicone materials micro-buckles with wavelengths in submicron to micron scale have received increasing attention because it is useful for generating well-ordered periodic microstructures spontaneously without conventional lithographic techniques. This thesis investigates the buckling behavior of thin stiff films on soft polymeric substrates and explores a variety of applications, ranging from optical gratings, optical masks, energy harvest to energy storage. A laser scanning technique is proposed to detect micro-strain induced by thermomechanical loads and a periodic buckling microstructure is employed as a diffraction grating with broad wavelength tunability, which is spontaneously generated from a metallic thin film on polymer substrates. A mechanical strategy is also presented for quantitatively buckling nanoribbons of piezoelectric material on polymer substrates involving the combined use of lithographically patterning surface adhesion sites and transfer printing technique. The precisely engineered buckling configurations provide a route to energy harvesters with extremely high levels of stretchability. This stiff-thin-film/polymer hybrid structure is further employed into electrochemical field to circumvent the electrochemically-driven stress issue in silicon-anode-based lithium ion batteries. It shows that the initial flat silicon-nanoribbon-anode on a polymer substrate tends to buckle to mitigate the lithiation-induced stress so as to avoid the pulverization of silicon anode. Spontaneously generated submicron buckles of film/polymer are also used as an optical mask to produce submicron periodic patterns with large filling ratio in contrast to generating only ~100 nm edge submicron patterns in conventional near-field soft contact photolithography. This thesis aims to deepen understanding of buckling behavior of thin films on compliant substrates and, in turn, to harness the fundamental properties of such instability for diverse applications. / Dissertation/Thesis / Ph.D. Mechanical Engineering 2014
6

The Performance of Structured High-Capacity Si Anodes for Lithium-Ion Batteries

Fan, Jui Chin 01 June 2015 (has links) (PDF)
This study sought to improve the performance of Si-based anodes through the use of hierarchically structured electrodes to provide the nanoscale framework needed to accommodate large volume changes while controlling the interfacial area – which affects solid-electrolyte interphase (SEI) formation. To accomplish this, electrodes were fabricated from vertically aligned carbon nanotubes (VACNT) infiltrated with silicon. On the nanoscale, these electrodes allowed us to adjust the surface area, tube diameter, and silicon layer thickness. On the micro-scale, we have the ability to control the electrode thickness and the incorporation of micro-sized features. Treatment of the interfacial area between the electrolyte and the electrode by encapsulating the electrode controls the stabilization and reduction of unstable SEI. Si-VACNT composite electrodes were prepared by first synthesizing VACNTs on Si wafers using photolithography for catalyst patterning, followed by aligned CNT growth. Nano-layers of silicon were then deposited on the aligned carbon nanotubes via LPCVD at 200mTorr and 535°C. A thin copper film was used as the current collector. Electrochemical testing was performed on the electrodes assembled in a CR2025 coin cell with a metallic Li foil as the counter electrode. The impact of the electrode structure on the capacity at various current densities was investigated. Experimental results demonstrated the importance of control over the superficial area between the electrolyte and the electrode on the performance of silicon-based electrodes for next generation lithium ion batteries. In addition, the results show that Si-VACNT height does not limit Li transport for the range of the conditions tested.
7

Simulations of Electrode Heterogeneity and Design for Lithium-Ion Batteries

Hamedi, Amir Sina 17 April 2023 (has links) (PDF)
This work develops three models for simulation of the high-current operation of Li-ion batteries. Simulation as a tool can provide understanding beyond what experiments can offer. Different types of electrodes such as graphite, silicon, and NMC are modeled to study cell performance and aging under aggressive operating conditions. The first part of this work focuses on the effect of electrode microscale lateral heterogeneity on the degradation of conventional Li-ion batteries, especially for fast-charge applications. The non-uniform pore distribution leads to the nonuniform current density and state of charge (SoC), which can finally result in non-uniform Li plating and aging. The interactions of electrode regions a few mm away from each other with different ionic conductivity are simulated by combining conventional models in parallel with submodels to treat additional physics. The onset and growth of lithium metal deposits on the anode are predicted. The next topic is to investigate the structure of multilayer anodes (MLA) consisting of two layers in the through-plane direction with different ionic resistances. The model is intended to simulate a commercially made cell. Simulation results demonstrate that coating a higher-density layer near the current collector and a lower-density layer near the separator provides improved accessibility to active material during cell fast charge through better ionic transport. In addition, the improved anode further augments the cathode performance in high-current discharges, leading to greater energy density and power density of the cell. The last topic is to develop a numerically efficient mechanical and electrochemical model for silicon anodes. Silicon has a much higher energy density than graphite as a material for the anode; however, it undergoes high volume expansion and contraction ($\sim$ 280\%) which affects cell thickness and electrode ionic transport. The mechanical model treats these volume-change phenomena in a continuum fashion and is integrated into a P2D model of a Si half cell. As shown by the model, the external casing material of such cells can improve or restrict electrode utilization. Different cell designs are simulated to predict the degree of lithiation.
8

Mathematical Reformulation of Physics Based Model Predicting Diffusion, Volume Change and Stress Generation in Electrode Materials

Webb, Rebecca Diane 10 November 2022 (has links)
No description available.
9

Étude par tomographie RX d'anodes à base de silicium pour batteries Li-ion / X-ray tomography study of silicon-based anodes for Li-ion batteries

Vanpeene, Victor 22 March 2019 (has links)
De par sa capacité spécifique théorique dix fois plus élevée que celle du graphite actuellement utilisé comme matériau actif d'anode pour les batteries Li-ion, le silicium peut jouer un rôle important dans l'augmentation de la densité d'énergie de ces systèmes. La réaction d'alliage mise en place lors de sa lithiation se traduit cependant par une forte expansion volumique du silicium (~300 % contre seulement ~10 % pour le graphite), conduisant à la dégradation structurale de l'électrode, affectant notablement sa tenue au cyclage. Comprendre en détail ces phénomènes de dégradation et développer des stratégies pour limiter leur impact sur le fonctionnement de l'électrode présentent un intérêt indéniable pour la communauté scientifique du domaine. L'objectif de ces travaux de thèse était en premier lieu de développer une technique de caractérisation adaptée à l'observation de ces phénomènes de dégradation et d'en tirer les informations nécessaires pour optimiser la formulation des anodes à base de silicium. Dans ce contexte, nous avons utilisé la tomographie aux rayons X qui présente l'avantage d'être une technique analytique non-destructive permettant le suivi in situ et en 3D des variations morphologiques s'opérant au sein de l'électrode lors de son fonctionnement. Cette technique a pu être adaptée à l'étude de cas du silicium en ajustant les volumes d'électrodes analysés, la résolution spatiale et la résolution temporelle aux phénomènes à observer. Des procédures de traitement d'images adéquates ont été appliquées afin d'extraire de ces analyses tomographiques un maximum d'informations qualitatives et quantitatives pertinentes sur leur variation morphologique. De plus, cette technique a pu être couplée à la diffraction des rayons X afin de compléter la compréhension de ces phénomènes. Nous avons ainsi montré que l'utilisation d'un collecteur de courant 3D structurant en papier carbone permet d'atténuer les déformations morphologiques d'une anode de Si et d'augmenter leur réversibilité en comparaison avec un collecteur de courant conventionnel de géométrie plane en cuivre. Nous avons aussi montré que l'utilisation de nanoplaquettes de graphène comme additif conducteur en remplacement du noir de carbone permet de former un réseau conducteur plus à même de supporter les variations volumiques importantes du silicium. Enfin, la tomographie RX a permis d'étudier de façon dynamique et quantitative la fissuration et la délamination d'une électrode de Si déposée sur un collecteur de cuivre. Nous avons ainsi mis en évidence l'impact notable d'un procédé de "maturation" de l'électrode pour minimiser ces phénomènes délétères de fissuration-délamination de l'électrode. / Because of its theoretical specific capacity ten times higher than that of graphite currently used as active anode material for Li-ion batteries, silicon can play an important role in increasing the energy density of these systems. However, the alloying reaction set up during its lithiation results in a high volume expansion of silicon (~300% compared with only ~10% for graphite) leading to the structural degradation of the electrode, which is significantly affecting its cycling behavior. Understanding in detail these phenomena of degradation and developing strategies to limit their impact on the functioning of the electrode are of undeniable interest for the scientific community of the field. The objective of this thesis work was first to develop a characterization technique adapted to the observation of these degradation phenomena and to draw the necessary information to optimize the formulation of silicon-based anodes. In this context, we have used X-ray tomography which has the advantage of being a non-destructive analytical technique allowing in situ and 3D monitoring of the morphological variations occurring within the electrode during its operation. This technique has been adapted to the case study of silicon by adjusting the analyzed electrode volumes, the spatial resolution and the temporal resolution to the phenomena to be observed. Appropriate image processing procedures were applied to extract from these tomographic analyzes as much qualitative and quantitative information as possible on their morphological variation. In addition, this technique could be coupled to X-ray diffraction to complete the understanding of these phenomena. We have shown that the use of a carbon paper structuring 3D current collector makes it possible to attenuate the morphological deformations of an Si anode and to increase their reversibility in comparison with a conventional copper current collector of plane geometry. We have also shown that the use of graphene nanoplatelets as a conductive additive to replace carbon black can form a conductive network more able to withstand the large volume variations of silicon. Finally, the X-ray tomography allowed studying dynamically and quantitatively the cracking and delamination of an Si electrode deposited on a copper collector. We have thus demonstrated the significant impact of a process of "maturation" of the electrode to minimize these deleterious phenomena of cracking-delamination of the electrode.

Page generated in 0.0687 seconds