• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The properties of nitrogen in silicon

Alpass, Charles Rowland January 2008 (has links)
The behaviour of nitrogen in silicon is investigated using the dislocation unlocking technique. Specimens containing well-ordered arrays of dislocations are isothermally annealed for a controlled duration, during which nitrogen segregates to and pins the dislocations. The stress required to unlock the dislocations is then measured by three-point bending at elevated temperature. By analysing the dependence of this unlocking stress on anneal duration and temperature, information about nitrogen's transport and interaction with dislocations can be deduced. Experiments are performed at anneal temperatures of 500 - 1050C using float-zone silicon with [N] = 2x10^15 cm^-3. The results are analysed to give an expression for nitrogen's effective diffusivity of D = 173,000 exp(-3.24eV/kT)cm^2 s^-1 in the 500 - 750C range, showing for the first time that nitrogen transport at low temperatures behaves in the same way as measured at higher temperatures by other groups using secondary ion mass spectrometry. If analysed in terms of monomer-dimer dissociative transport, the results give a nitrogen monomer diffusivity of D_1 = 28 exp(-(1.1 to 1.4 eV)/kT) cm^2 s^-1, which is similar to that found by another analysis in the literature. The measurements also show that nitrogen's dislocation locking strength measured at 550C is dependent on anneal temperature, peaking at 600 - 700C and falling towards zero above 1000C. The dislocation unlocking technique itself is also investigated and characterized. It is found that the measured unlocking stress is dependent on the three-point bend duration, falling with increasing duration. Analysis of these results in terms of the theory of release of dislocations from pinning points indicates that nitrogen dislocation locking is likely to be by an atomic species. This effect also has implications for the results of previous nitrogen dislocation unlocking experiments, and the technique has been modified so that a standardised set of conditions is used for every test. Other measurements show that nitrogen's dislocation locking effect is lessened by the presence of transition metal contamination, and that dislocation velocity in silicon may be affected by the nitrogen present in the material. A modified dislocation unlocking technique is developed to measure dislocation locking from near-surface ion-implanted impurities. Results from heavily N-implanted silicon show that nitrogen implantation can provide additional dislocation locking strength to that already given by the oxygen in the material. The scale of the dislocation locking effect in these experiments may provide evidence that nitrogen's effective diffusivity is reduced at high concentrations, indicating that nitrogen transport may be by a dissociative mechanism.
2

Interaction of oxygen and nitrogen impurities with dislocations in silicon single-crystals

Giannattasio, Armando January 2004 (has links)
An experimental technique based on the immobilisation of dislocations by segregation of impurity atoms to the dislocation core (dislocation locking) has been developed and used to investigate the critical conditions for slip occurrence in Czochralski-grown and nitrogen-doped floating-zone-grown silicon crystals. The accumulation of nitrogen and oxygen impurities along a dislocation and the resulting dislocation locking effect has been investigated in silicon samples subjected to different annealing conditions. In particular, the stress needed to unlock the dislocations after their decoration by impurities has been measured as a function of annealing duration and temperature. The approach used in this study has allowed the determination of new diffusivity data for oxygen and nitrogen in silicon in the technologically important range of temperatures 350-850°C. No other data covering such wide temperature range are available in the literature. In addition to transport properties, the binding energy of an impurity atom to a dislocation in silicon has been deduced from the experimental data in the case of oxygen and nitrogen impurities. A discussion in terms of the impurity species responsible for transport (monomers or dimers) and dislocation locking is also presented. The role of oxide precipitates in the generation of glide dislocation loops and the parameters affecting the occurrence of slip have been investigated in silicon samples containing precipitates of different sizes and different morphologies. The fundamental parameters deduced in this work have been used to develop a numerical model to investigate the effect of different heat treatments on the mechanical properties of silicon wafers containing a controlled distribution of impurities. This model has then been used to simulate real wafer processing conditions during device fabrication to show how they may be modified to increase dislocation locking. It is hoped that these results will have relevance to how wafers are processed in order to minimise or eliminate dislocation multiplication and consequent warpage.
3

Creation and control of entanglement in condensed matter spin systems

Simmons, Stephanie January 2011 (has links)
The highly parallel nature of the fundamental principles of quantum mechanics means that certain key resource-intensive tasks --- including searching, code decryption and medical, chemical and material simulations --- can be computed polynomially or even exponentially faster with a quantum computer. In spite of its remarkably fast development, the field of quantum computing is still young, and a large-scale prototype using any one of the candidate quantum bits (or 'qubits') under investigation has yet to be developed. Spin-based qubits in condensed matter systems are excellent candidates. Spins controlled using magnetic resonance have provided the first, most advanced, and highest fidelity experimental demonstrations of quantum algorithms to date. Despite having highly promising control characteristics, most physical ensembles investigated using magnetic resonance are unable to produce entanglement, a critical missing ingredient for a pure-state quantum computer. Quantum objects are said to be entangled if they cannot be described individually: they remain fundamentally linked regardless of their physical separation. Such highly non-classical states can be exploited for a host of quantum technologies including teleportation, metrology, and quantum computation. Here I describe how to experimentally create, control and characterise entangled quantum ensembles using magnetic resonance. I first explore the relationship between entanglement and quantum metrology and demonstrate a sensitivity enhancement over classical resources using molecular sensors controlled with liquid-state nuclear magnetic resonance. I then examine the computational potential of irreversible relaxation processes in combination with traditional reversible magnetic resonance control techniques. I show how irreversible processes can polarise both nuclear and electronic spins, which improves the quality of qubit initialisation. I discuss the process of quantum state tomography, where an arbitrary quantum state can be accurately measured and characterised, including components which go undetected using traditional magnetic resonance techniques. Lastly, I combine the above findings to initialise, create and characterise entanglement between an ensemble of electron and nuclear spin defects in silicon. I further this by generating pseudo-entanglement between an ensemble of nuclear spins mediated by a transient electron spin in a molecular system. These findings help pave the way towards a particular architecture for a scalable, spin-based quantum computer.
4

シリコン単結晶の重回帰分析を用いたX線応力測定

田中, 啓介, TANAKA, Keisuke, 水野, 賢一, MIZUNO, Kenichi, 町屋, 修太郎, MACHIYA, Shutaro, 秋庭, 義明, AKINIWA, Yoshiaki 05 1900 (has links)
No description available.

Page generated in 0.1312 seconds