1 |
Noise characterization of transistors in 0.25μm and 0.5μm silicon-on-sapphire processesAlbers, Keith Burton January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / William B. Kuhn / A technique for measuring and characterizing transistor noise is presented. The
primary goal of the measurements is to locate the 1/f noise corner for select transistors in
Silicon-on-Sapphire processes. Additionally, the magnitude of the background channel
noise of each transistor is measured. With this data, integrated circuit (IC) engineers will
have a qualitative and quantitative resource for selecting transistors in designs with low
noise requirements.
During tests, transistor noise behavioral change is investigated over varying channel
lengths, device type (N-type and P-type), threshold voltage, and bias voltage levels.
Noise improvements for increased channel lengths from minimal, 1.0μm, and 4.0μm are
measured. Transistors with medium and high threshold voltages are tested for
comparison of their noise performance. The bias voltages are chosen to represent typical
design values used in practice, with approximately 400 mV overdrive and a drain-to-source
voltage range of 0.5 to 3.0V.
The transistors subjected to tests are custom designed in Peregrine’s 0.5μm (FC)
and 0.25μm (GC) Silicon-on-Sapphire (SOS) processes. In order to allow channel
current noise to dominate over other circuit noise, the transistors have extraordinarily
large aspect ratios (~2500 - 5000).
The transistor noise produced is amplified and measured over a frequency range of
1kHz - 100MHz. This range allows the measurement of each device’s low and high
frequency noise spectrum and resulting noise corner.
|
2 |
Qubit control-pulse circuits in SOS-CMOS technology for a Si:P quantum computerEkanayake, Sobhath Ramesh, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2008 (has links)
Microelectronics has shaped the world beyond what was thought possible at the time of its advent. One area of current research in this field is on the solid-state Si:P-based quantum computer (QC). In this machine, each qubit requires an individually addressed fast control-pulse for non-adiabatic drive and measure operations. Additionally, it is increasingly becoming important to be able to interface nanoelectronics with complementary metal-oxide-semiconductor (CMOS) technology. In this work, I have designed and demonstrated full-custom mixed-mode and full-digital fast control-pulse generators fabricated in a silicon-on-sapphire (SOS) CMOS commercial foundry process ?? a radio-frequency (RF) CMOS technology. These circuits are, fundamentally, fast monostable multivibrators. Initially, after the design specifications were decided upon, I characterized NFET and PFET devices and a n+-diffusion resistor from 500 nm and 250 nm commercial SOS-CMOS processes. Measuring their conductance curves at 300 300 K, 4.2 2 K, and sub-K (30 30 mK base to 1000 1000 mK) showed that they function with desirable behaviour although exhibiting some deviations from their 300 300 K characteristics. The mixed-mode first generation control-pulse generator was demonstrated showing that it produced dwell-time adjustable pulses with 100 100 ps rise-times at 300 K, 4.2 2 K, and sub-K with a power dissipation of 12 12 uW at 100 100 MHz. The full-digital second generation control-pulse generator was demonstrated showing accurately adjustable dwell-times settable via a control-word streamed synchronously to a shift-register. The design was based on a ripple-counter with provisions for internal or external clocking. This research has demonstrated that SOS-CMOS technology is highly feasible for the fabrication of control microelectronics for a Si:P-based QC. I have demonstrated full-custom SOS-CMOS mixed-mode and full-digital control circuits at 300 300 K, 4.2 2 K, and sub-K which suitable for qubit control.
|
3 |
Qubit control-pulse circuits in SOS-CMOS technology for a Si:P quantum computerEkanayake, Sobhath Ramesh, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2008 (has links)
Microelectronics has shaped the world beyond what was thought possible at the time of its advent. One area of current research in this field is on the solid-state Si:P-based quantum computer (QC). In this machine, each qubit requires an individually addressed fast control-pulse for non-adiabatic drive and measure operations. Additionally, it is increasingly becoming important to be able to interface nanoelectronics with complementary metal-oxide-semiconductor (CMOS) technology. In this work, I have designed and demonstrated full-custom mixed-mode and full-digital fast control-pulse generators fabricated in a silicon-on-sapphire (SOS) CMOS commercial foundry process ?? a radio-frequency (RF) CMOS technology. These circuits are, fundamentally, fast monostable multivibrators. Initially, after the design specifications were decided upon, I characterized NFET and PFET devices and a n+-diffusion resistor from 500 nm and 250 nm commercial SOS-CMOS processes. Measuring their conductance curves at 300 300 K, 4.2 2 K, and sub-K (30 30 mK base to 1000 1000 mK) showed that they function with desirable behaviour although exhibiting some deviations from their 300 300 K characteristics. The mixed-mode first generation control-pulse generator was demonstrated showing that it produced dwell-time adjustable pulses with 100 100 ps rise-times at 300 K, 4.2 2 K, and sub-K with a power dissipation of 12 12 uW at 100 100 MHz. The full-digital second generation control-pulse generator was demonstrated showing accurately adjustable dwell-times settable via a control-word streamed synchronously to a shift-register. The design was based on a ripple-counter with provisions for internal or external clocking. This research has demonstrated that SOS-CMOS technology is highly feasible for the fabrication of control microelectronics for a Si:P-based QC. I have demonstrated full-custom SOS-CMOS mixed-mode and full-digital control circuits at 300 300 K, 4.2 2 K, and sub-K which suitable for qubit control.
|
Page generated in 0.0301 seconds